Liu Na, Li Jia-Xin, Yuan Dan-Yang, Su Yin-Na, Zhang Pei, Wang Qi, Su Xiao-Min, Li Lin, Li Haitao, Chen She, He Xin-Jian
College of Life Sciences, Beijing Normal University, Beijing, China.
National Institute of Biological Sciences, Beijing, China.
EMBO J. 2025 Apr 28. doi: 10.1038/s44318-025-00445-w.
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.
尽管拟南芥RPD3型组蛋白去乙酰化酶HDA19及其紧密同源物HDA6参与SIN3型组蛋白去乙酰化酶复合物,但它们发挥着不同的生物学作用,而这些差异的原因尚不清楚。本研究鉴定出三种被子植物特有的与HDA19相互作用的同源蛋白,分别称为HDIP1、HDIP2和HDIP3(HDIP1/2/3)。这些蛋白与HDA19和其他保守的组蛋白去乙酰化酶复合物组分相互作用,导致形成含HDA19的SIN3型复合物,而它们不参与含HDA6的复合物的形成。虽然保守的SIN3型复合物组分的突变体表现出与hda19突变体不同的表型,但hdip1/2/3突变体在发育、脱落酸反应和干旱胁迫耐受性方面与hda19突变体表现出非常相似的表型。基因组和转录组分析表明,HDIP1/2/3和HDA19共同占据染色质并共同抑制基因转录,尤其是对胁迫相关基因的抑制。HDIP1中的一个α螺旋基序具有与核小体和结构DNA结合的能力,并且是其在拟南芥植物中发挥功能所必需的。这些发现表明,被子植物的SIN3型复合物已经进化到包括额外的亚基,以精确调节组蛋白去乙酰化和基因转录。