Ruttkay-Nedecký G, Brabec V
Gen Physiol Biophys. 1985 Aug;4(4):393-410.
The electrochemical behaviour of tobacco mosaic virus (TMV) and its isolated protein was studied using differential pulse (DP) voltammetry at a graphite electrode and by direct current (DC) polarography in Brdicka solution. TMV and its isolated protein were found to be electrooxidized at the graphite electrode in the adsorbed state. Both species yielded two oxidation peaks on DP voltammograms. The first, more negative peak, corresponded to electrooxidation of tyrosine residues, whereas the other, more positive, peak corresponded to electrooxidation of tryptophan residues. DC polarography was used to detect degradation of TMV and denaturation of TMV-protein induced by an increased pH and by the addition of urea, respectively. These structural transformations resulted in increased DP voltammetric oxidation currents as recorded using a graphite working electrode. It has been suggested that the higher oxidation currents were due to an increase in the number of tyrosine and tryptophan residues accessible to the reaction at the graphite electrode. The results of these electrochemical investigations were in a good agreement with the estimation of the accessibility of tyrosine and tryptophan residues based on the well-explored three-dimensional structure of TMV and its isolated protein.