Cipta Nadia Omega, Zeng Yingying, Wong Ka Wai, Zheng Zi Hao, Yi Yao, Warrier Tushar, Teo Jian Zhou, Teo Jia Hao Jackie, Kok Yee Jiun, Bi Xuezhi, Taneja Reshma, Ong Derrick Sek Tong, Xu Jian, Ginhoux Florent, Li Hu, Liou Yih-Cherng, Loh Yuin-Han
Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
Genome Biol. 2025 Apr 28;26(1):107. doi: 10.1186/s13059-025-03577-8.
The interplay between 3D genomic structure and transposable elements (TE) in regulating cell state-specific gene expression program is largely unknown. Here, we explore the utilization of TE-derived enhancers in naïve and expanded pluripotent states by integrative analysis of genome-wide Hi-C-defined enhancer interactions, H3K27ac HiChIP profiling and CRISPR-guided TE proteomics landscape.
We find that short interspersed nuclear elements (SINEs) are the more involved TEs in the active chromatin and 3D genome architecture. In particular, mammalian-wide interspersed repeat (MIR), a SINE family member, is highly associated with naïve-specific genomic interactions compared to the expanded state. Primarily, in the naïve pluripotent state, MIR enhancer is co-opted by ESRRB for naïve-specific gene expression program. This ESRRB and MIR enhancer interaction is crucial for the formation of loops that build a network of enhancers and super-enhancers regulating pluripotency genes. We demonstrate that loss of a ESRRB-bound MIR enhancer impairs self-renewal. We also find that MIR is co-bound by structural protein complex, ESRRB-YY1, in the naïve pluripotent state.
Altogether, our study highlights the topological regulation of ESRRB on MIR in the naïve potency state.
三维基因组结构与转座元件(TE)在调节细胞状态特异性基因表达程序中的相互作用在很大程度上尚不清楚。在这里,我们通过对全基因组Hi-C定义的增强子相互作用、H3K27ac HiChIP分析和CRISPR引导的TE蛋白质组学景观进行综合分析,探索TE衍生增强子在原始多能状态和扩展多能状态中的利用情况。
我们发现短散在核元件(SINEs)是活跃染色质和三维基因组结构中参与度更高的TE。特别是,哺乳动物广泛散布重复序列(MIR),一种SINE家族成员,与扩展状态相比,与原始特异性基因组相互作用高度相关。主要地,在原始多能状态下,MIR增强子被ESRRB用于原始特异性基因表达程序。这种ESRRB与MIR增强子的相互作用对于形成构建调节多能性基因的增强子和超级增强子网络的环至关重要。我们证明,与ESRRB结合的MIR增强子的缺失会损害自我更新。我们还发现,在原始多能状态下,MIR与结构蛋白复合物ESRRB-YY1共同结合。
总之,我们的研究突出了ESRRB在原始多能状态下对MIR的拓扑调控。