文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

增强子-启动子接触的形成需要 RNAPII 并拮抗环挤出。

Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion.

机构信息

Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.

出版信息

Nat Genet. 2023 May;55(5):832-840. doi: 10.1038/s41588-023-01364-4. Epub 2023 Apr 3.


DOI:10.1038/s41588-023-01364-4
PMID:37012454
Abstract

Homotypic chromatin interactions and loop extrusion are thought to be the two main drivers of mammalian chromosome folding. Here we tested the role of RNA polymerase II (RNAPII) across different scales of interphase chromatin organization in a cellular system allowing for its rapid, auxin-mediated degradation. We combined Micro-C and computational modeling to characterize subsets of loops differentially gained or lost upon RNAPII depletion. Gained loops, extrusion of which was antagonized by RNAPII, almost invariably formed by engaging new or rewired CTCF anchors. Lost loops selectively affected contacts between enhancers and promoters anchored by RNAPII, explaining the repression of most genes. Surprisingly, promoter-promoter interactions remained essentially unaffected by polymerase depletion, and cohesin occupancy was sustained. Together, our findings reconcile the role of RNAPII in transcription with its direct involvement in setting-up regulatory three-dimensional chromatin contacts genome wide, while also revealing an impact on cohesin loop extrusion.

摘要

同源染色质相互作用和环挤压被认为是哺乳动物染色体折叠的两个主要驱动因素。在这里,我们在一个允许其快速、激素介导降解的细胞系统中,测试了 RNA 聚合酶 II(RNAPII)在不同尺度的染色质组织中的作用。我们结合了微球菌和计算模型来描述 RNAPII 耗竭后差异获得或丢失的环亚群。获得的环,其挤压被 RNAPII 拮抗,几乎总是通过参与新的或重新布线的 CTCF 锚点形成。丢失的环选择性地影响由 RNAPII 锚定的增强子和启动子之间的接触,解释了大多数基因的抑制。令人惊讶的是,启动子-启动子相互作用基本上不受聚合酶耗竭的影响,而着丝粒的占有率保持不变。总之,我们的发现协调了 RNA 聚合酶 II 在转录中的作用与其在建立全基因组调控三维染色质接触方面的直接参与,同时也揭示了对着丝粒环挤压的影响。

相似文献

[1]
Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion.

Nat Genet. 2023-5

[2]
Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF.

Nat Commun. 2022-4-19

[3]
Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.

Mol Cell. 2021-8-5

[4]
Chromatin jets define the properties of cohesin-driven in vivo loop extrusion.

Mol Cell. 2022-10-20

[5]
Loop stacking organizes genome folding from TADs to chromosomes.

Mol Cell. 2023-5-4

[6]
Transcription shapes 3D chromatin organization by interacting with loop extrusion.

Proc Natl Acad Sci U S A. 2023-3-14

[7]
Cohesin is required for long-range enhancer action at the Shh locus.

Nat Struct Mol Biol. 2022-9

[8]
Genomic Marks Associated with Chromatin Compartments in the CTCF, RNAPII Loop and Genomic Windows.

Int J Mol Sci. 2021-10-27

[9]
A WIZ/Cohesin/CTCF Complex Anchors DNA Loops to Define Gene Expression and Cell Identity.

Cell Rep. 2020-4-14

[10]
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.

EMBO J. 2017-12-15

引用本文的文献

[1]
Architectural transcription factors collectively shape nuclear radial positioning of chromatin contacts.

Sci Adv. 2025-8-29

[2]
Disentangling spatial organization and splicing of rare intron classes in the human genome.

bioRxiv. 2025-8-15

[3]
Promoter strength and position govern promoter competition.

bioRxiv. 2025-5-7

[4]
Liebenberg syndrome severity arises from variations in Pitx1 locus topology and proportion of ectopically transcribing cells.

Nat Commun. 2025-7-9

[5]
Structural variants in the 3D genome as drivers of disease.

Nat Rev Genet. 2025-6-30

[6]
RNA polymerase II transcription compartments - from factories to condensates.

Nat Rev Genet. 2025-6-19

[7]
CREPT is required for the metastasis of triple-negative breast cancer through a co-operational-chromatin loop-based gene regulation.

Mol Cancer. 2025-6-10

[8]
Cohesin stabilization at promoters and enhancers by common transcription factors and chromatin regulators.

Epigenetics Chromatin. 2025-6-9

[9]
DNA G-quadruplex structures act as functional elements in α- and β-globin enhancers.

Genome Biol. 2025-6-4

[10]
Revisiting models of enhancer-promoter communication in gene regulation.

Genome Res. 2025-6-2

本文引用的文献

[1]
Transcription shapes 3D chromatin organization by interacting with loop extrusion.

Proc Natl Acad Sci U S A. 2023-3-14

[2]
A cohesin traffic pattern genetically linked to gene regulation.

Nat Struct Mol Biol. 2022-12

[3]
Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes.

Nat Struct Mol Biol. 2022-6

[4]
Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion.

Curr Biol. 2022-7-11

[5]
The twisted path of the 3D genome: where does it lead?

Trends Biochem Sci. 2022-9

[6]
Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging.

Science. 2022-4-29

[7]
The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation.

Sci Adv. 2022-4

[8]
A Mediator-cohesin axis controls heterochromatin domain formation.

Nat Commun. 2022-2-8

[9]
RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis.

Sci Adv. 2021-10-22

[10]
The Pol II preinitiation complex (PIC) influences Mediator binding but not promoter-enhancer looping.

Genes Dev. 2021-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索