Suppr超能文献

用于仿生人工智能机器人应用的丝素蛋白基生物忆阻器

Silk Fibroin-Based Biomemristors for Bionic Artificial Intelligence Robot Applications.

作者信息

Yang Chuan, Wang Hongyan, Wang Kun, Cao Zelin, Ren Fenggang, Zhou Guangdong, Chen Yuanzheng, Sun Bai

机构信息

School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

Frontier Institute of Science and Technology, and Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

出版信息

ACS Nano. 2025 May 13;19(18):17173-17198. doi: 10.1021/acsnano.5c02480. Epub 2025 Apr 28.

Abstract

In the emerging fields of flexible electronics and bioelectronics, protein-based materials have attracted widespread attention due to their biocompatibility, biodegradability, and processability. Among these materials, silk fibroin (SF), a protein derived from natural silk, has demonstrated significant potential in biomedical applications such as medical sensing and bone tissue engineering, as well as in the development of advanced biosensors. This is primarily due to its highly ordered β-sheet structure, mechanical properties, and processability. Furthermore, SF-based memristors provided a material choice for producing flexible wearable, and even implantable bioelectronic devices, which are expected to advance intelligent health monitoring, electronic skin (e-skin), brain-computer interface (BCI), and other frontier bioelectronic technologies. This review systematically summarizes the latest research progress in SF-based memristors concerning structural design, performance optimization, device integration, and application prospects, particularly highlighting their potential applications in neuromorphic computing and memristive sensors. Concurrently, we objectively analyzed the challenges currently faced by SF-based memristors and prospectively discussed their future development trends. This review provides a theoretical foundation and technological roadmap for biomaterials-based memristor devices, aiming to realize applications in flexible electronics and bioelectronics.

摘要

在柔性电子学和生物电子学等新兴领域,基于蛋白质的材料因其生物相容性、生物可降解性和可加工性而受到广泛关注。在这些材料中,丝素蛋白(SF)是一种源自天然蚕丝的蛋白质,已在生物医学应用(如医学传感和骨组织工程)以及先进生物传感器的开发中展现出巨大潜力。这主要归因于其高度有序的β-折叠结构、机械性能和可加工性。此外,基于SF的忆阻器为生产柔性可穿戴甚至可植入生物电子设备提供了一种材料选择,有望推动智能健康监测、电子皮肤(e-skin)、脑机接口(BCI)等前沿生物电子技术的发展。本文综述系统地总结了基于SF的忆阻器在结构设计、性能优化、器件集成和应用前景方面的最新研究进展,特别强调了它们在神经形态计算和忆阻传感器中的潜在应用。同时,我们客观分析了基于SF的忆阻器目前面临的挑战,并前瞻性地讨论了它们未来的发展趋势。本文综述为基于生物材料的忆阻器器件提供了理论基础和技术路线图,旨在实现其在柔性电子学和生物电子学中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验