Suppr超能文献

Ultra-sparse view lung CT image reconstruction using generative adversarial networks and compressed sensing.

作者信息

Li Zhaoguang, Sun Zhengxiang, Lv Lin, Liu Yuhan, Wang Xiuying, Xu Jingjing, Xing Jianping, Babyn Paul, Sun Feng-Rong

机构信息

School of Integrated Circuits, Shandong University, Jinan, China.

Faculty of Science, The University of Sydney, NSW, Australia.

出版信息

J Xray Sci Technol. 2025 Jul;33(4):803-816. doi: 10.1177/08953996251329214. Epub 2025 Apr 29.

Abstract

X-ray ionizing radiation from Computed Tomography (CT) scanning increases cancer risk for patients, thus making sparse view CT, which diminishes X-ray exposure by lowering the number of projections, highly significant in diagnostic imaging. However, reducing the number of projections inherently degrades image quality, negatively impacting clinical diagnosis. Consequently, attaining reconstructed images that meet diagnostic imaging criteria for sparse view CT is challenging. This paper presents a novel network (CSUF), specifically designed for ultra-sparse view lung CT image reconstruction. The CSUF network consists of three cohesive components including (1) a compressed sensing-based CT image reconstruction module (VdCS module), (2) a U-shaped end-to-end network, CT-RDNet, enhanced with a self-attention mechanism, acting as the generator in a Generative Adversarial Network (GAN) for CT image restoration and denoising, and (3) a feedback loop. The VdCS module enriches CT-RDNet with enhanced features, while CT-RDNet supplies the VdCS module with prior images infused with rich details and minimized artifacts, facilitated by the feedback loop. Engineering simulation experimental results demonstrate the robustness of the CSUF network and its potential to deliver lung CT images with diagnostic imaging quality even under ultra-sparse view conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验