文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于高效光热转换和太阳能驱动水蒸发的三元包合共晶体。

Ternary Inclusion Co-Crystals for Efficient Photothermal Conversion and Solar-Driven Water Evaporation.

作者信息

Wang Ruotong, Su Yi, Xiao Zhiyu, Wang Tongtong, Liu Kun, Gong Zhihao, Wu Jiabin, Chen Junyi, Liu Zhixue, Li Jingjing, Zhang Yu-Hui, Wang Lu, Li Bin, Zhang Xiaotao, Li Chunju

机构信息

Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Jun;12(23):e2500050. doi: 10.1002/advs.202500050. Epub 2025 Apr 29.


DOI:10.1002/advs.202500050
PMID:40298923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12199327/
Abstract

Organic co-crystal engineering offers a convenient and efficient platform for preparing photothermal conversion (PTC) materials. However, current donor-acceptor (D-A) co-crystals generally have medium photothermal performance. Here, an inclusion co-crystal strategy is presented, i.e., host-guest encapsulation of small acceptor inside donor-type macrocycle's cavity, to enhance PTC efficiency through the promotion of D-A binding. A naphthyl-sidewall Tröger's base (TB[2]) molecular box donor is elaborately designed, which can encapsulate electron-deficient 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a 1:2 ternary inclusion charge-transfer (CT) co-crystal via the synergism of multiple noncovalent forces. Under 808 nm laser irradiation (0.7 W cm), the PTC efficiency of co-crystals is as high as 94.3%. The co-crystals are further introduced into the porous polymer of polyurethane (PU) to prepare an interfacial evaporator (TB-TCNQ@PU) for solar-driven water evaporation. Under 1 Sun irradiation, a high-water evaporation rate of 1.746 kg m h and a prominent solar-to-vapor efficiency of 93.8% are achieved. This work opens new avenues for the efficient PTC materials.

摘要

有机共晶工程为制备光热转换(PTC)材料提供了一个便捷高效的平台。然而,目前的供体-受体(D-A)共晶通常具有中等的光热性能。在此,提出了一种包合共晶策略,即将小受体主体-客体封装在供体型大环腔内,通过促进D-A结合来提高PTC效率。精心设计了一种萘基侧链特罗格碱(TB[2])分子盒供体,它可以包封缺电子的7,7,8,8-四氰基对二甲苯(TCNQ),通过多种非共价力的协同作用形成1:2的三元包合电荷转移(CT)共晶。在808 nm激光照射(0.7 W cm)下,共晶的PTC效率高达94.3%。将共晶进一步引入聚氨酯(PU)多孔聚合物中,制备了用于太阳能驱动水蒸发的界面蒸发器(TB-TCNQ@PU)。在1个太阳辐照下,实现了1.746 kg m h的高水蒸发速率和93.8%的显著太阳能-蒸汽效率。这项工作为高效PTC材料开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/3571870b8aa3/ADVS-12-2500050-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/ee70521575dc/ADVS-12-2500050-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/b3a36354eefa/ADVS-12-2500050-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/8d092d344edb/ADVS-12-2500050-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/0c5f507813be/ADVS-12-2500050-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/1c20318aa84a/ADVS-12-2500050-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/3571870b8aa3/ADVS-12-2500050-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/ee70521575dc/ADVS-12-2500050-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/b3a36354eefa/ADVS-12-2500050-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/8d092d344edb/ADVS-12-2500050-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/0c5f507813be/ADVS-12-2500050-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/1c20318aa84a/ADVS-12-2500050-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ab/12199327/3571870b8aa3/ADVS-12-2500050-g006.jpg

相似文献

[1]
Ternary Inclusion Co-Crystals for Efficient Photothermal Conversion and Solar-Driven Water Evaporation.

Adv Sci (Weinh). 2025-6

[2]
Preparation of Porous Biomimetic Biochar-Based Photothermal Conversion Materials and Development of Air Water Harvesting Devices.

ACS Appl Mater Interfaces. 2025-6-25

[3]
Quantum Tunneling of Photogenerated Charges for Artificial Photosynthesis.

Acc Chem Res. 2025-6-18

[4]
Integrating thermal vibration and local surface plasmon resonance effect boosted "Symbiotic Co-evolution" for efficient solar evaporation, antimicrobial and antibiotic resistance genes removal.

Water Res. 2025-9-15

[5]
Phase-Change Microcapsules Boosting Clean Water Production and Electricity Output through Janus Bilayer Poly(vinyl alcohol)/Chitosan Composite Aerogels.

ACS Appl Mater Interfaces. 2025-6-18

[6]
Bioinspired multi-scale core-spun yarn-based solar evaporator for ultra-efficient and durable high-salinity brine desalination.

Fundam Res. 2023-11-18

[7]
2,6-Pyridinedicarboxylic Acid Covalently Bound Polydopamine for Enhanced Tumor Photothermal Therapy in NIR-I and NIR-II.

ACS Appl Mater Interfaces. 2025-6-18

[8]
Photothermal CuS as a Hole Transfer Layer on BiVO Photoanode for Efficient Solar Water Oxidation.

Angew Chem Int Ed Engl. 2025-8-11

[9]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[10]
Effects of consumers and health providers working in partnership on health services planning, delivery and evaluation.

Cochrane Database Syst Rev. 2021-9-15

本文引用的文献

[1]
Photothermal Phase Change Energy Storage Materials: A Groundbreaking New Energy Solution.

Research (Wash D C). 2024-8-20

[2]
Structurally diverse macrocycle co-crystals for solid-state luminescence modulation.

Nat Commun. 2024-3-21

[3]
Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications.

Small Methods. 2024-10

[4]
NIR-II photothermal conversion and imaging based on a cocrystal containing twisted components.

Chem Sci. 2023-11-28

[5]
Environmental energy enhanced solar-driven evaporator with spontaneous internal convection for highly efficient water purification.

Water Res. 2023-10-1

[6]
Manipulating Host-Guest Charge Transfer of a Water-Soluble Double-Cavity Cyclophane for NIR-II Photothermal Therapy.

Angew Chem Int Ed Engl. 2023-4-17

[7]
Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application.

Adv Sci (Weinh). 2023-4

[8]
Organic Charge-Transfer Cocrystals toward Large-Area Nanofiber Membrane for Photothermal Conversion and Imaging.

ACS Nano. 2022-9-27

[9]
Boosting Near-Infrared Photothermal Conversion by Intermolecular Interactions in Isomeric Cocrystals.

ACS Appl Mater Interfaces. 2022-6-29

[10]
Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle.

Nat Commun. 2022-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索