Das Saurav Chandra, Tasnim Wahia, Rana Humayan Kabir, Acharjee Uzzal Kumar, Islam Md Manowarul, Khatun Rabea
Department of Computer Science and Engineering, Jagannath University, Dhaka-1100, Bangladesh.
Department of Internet of Things and Robotics Engineering, Bangabandhu Sheikh Mujibur Rahman Digital University, Bangladesh, Kaliakair, Gazipur-1750, Bangladesh.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae628.
Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics. The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an effective strategy for unravelling complex patterns in cancer oncology. This research delves into breast cancer staging, classification, and diagnosis by leveraging the comprehensive dataset provided by the The Cancer Genome Atlas (TCGA). By integrating advanced machine learning algorithms with bioinformatics analysis, it introduces a cutting-edge methodology for identifying complex molecular signatures associated with different subtypes and stages of breast cancer. This study utilizes TCGA gene expression data to detect and categorize breast cancer through the application of machine learning and systems biology techniques. Researchers identified differentially expressed genes in breast cancer and analyzed them using signaling pathways, protein-protein interactions, and regulatory networks to uncover potential therapeutic targets. The study also highlights the roles of specific proteins (MYH2, MYL1, MYL2, MYH7) and microRNAs (such as hsa-let-7d-5p) that are the potential biomarkers in cancer progression founded on several analyses. In terms of diagnostic accuracy for cancer staging, the random forest method achieved 97.19%, while the XGBoost algorithm attained 95.23%. Bioinformatics and machine learning meet in this study to find potential biomarkers that influence the progression of breast cancer. The combination of sophisticated analytical methods and extensive genomic datasets presents a promising path for expanding our understanding and enhancing clinical outcomes in identifying and categorizing this intricate illness.
乳腺癌是一个令人担忧的全球健康问题,它包含一系列具有不同分子特征的广泛多样的疾病。将复杂的计算方法与大量生物数据集相结合,已成为揭示癌症肿瘤学复杂模式的有效策略。本研究利用癌症基因组图谱(TCGA)提供的综合数据集,深入探讨乳腺癌的分期、分类和诊断。通过将先进的机器学习算法与生物信息学分析相结合,它引入了一种前沿方法,用于识别与乳腺癌不同亚型和阶段相关的复杂分子特征。本研究利用TCGA基因表达数据,通过应用机器学习和系统生物学技术来检测和分类乳腺癌。研究人员在乳腺癌中鉴定出差异表达基因,并使用信号通路、蛋白质-蛋白质相互作用和调控网络对其进行分析,以发现潜在的治疗靶点。该研究还强调了特定蛋白质(MYH2、MYL1、MYL2、MYH7)和微小RNA(如hsa-let-7d-5p)的作用,这些基于多项分析是癌症进展中的潜在生物标志物。在癌症分期的诊断准确性方面,随机森林方法达到了97.19%,而XGBoost算法达到了95.23%。生物信息学和机器学习在本研究中相遇,以寻找影响乳腺癌进展的潜在生物标志物。复杂分析方法与广泛基因组数据集的结合,为扩大我们对这种复杂疾病的认识以及改善其识别和分类的临床结果提供了一条充满希望的途径。