Suppr超能文献

生物年龄加速与2型糖尿病和冠状动脉疾病风险中的遗传易感性相互作用。

Biological age acceleration and interaction with genetic predisposition in the risk of type 2 diabetes and coronary artery disease.

作者信息

Yang Guangrui, Du Xihao, Jiang Xuanwei, Wang Jingxuan, Shi Shuxiao, Zhong Victor W

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 415 East No. 1 Building, 227 South Chongqing Rd, Shanghai, 200025, China.

出版信息

Geroscience. 2025 Apr 29. doi: 10.1007/s11357-025-01671-0.

Abstract

Biological age (BA), compared to chronological age, offers a more accurate reflection of aging status. In this prospective UK Biobank study, BA acceleration was measured using the Klemera-Doubal method BA (KDM-BA) and Phenotypic age (PhenoAge). Cox models estimated associations of BA acceleration with incident T2D (n = 271,885) and CAD (n = 270,054). Both additive and multiplicative interactions between BA acceleration and polygenic risk score (PRS) were examined. Predictive performance was assessed by adding BA, PRS, and their interactions to traditional risk models. BA acceleration was positively associated with incident T2D (HR for KDM-BA: 2.38 [95% CI, 2.22-2.56]; HR for PhenoAge: 1.85 [95% CI, 1.72-1.99]) and CAD (HR for KDM-BA: 1.67 [95% CI, 1.58-1.76]; HR for PhenoAge: 1.33 [95% CI, 1.27-1.39]). Significant multiplicative interactions were observed between BA acceleration and PRS (all P for multiplicative interaction ≤ 0.002). Individuals with highest BA acceleration and PRS had strongest risk elevation for T2D (HR for KDM-BA, 6.89 [95% CI, 6.03-7.87]; HR for PhenoAge, 6.28 [95% CI, 5.28-7.46]) and CAD (HR for KDM-BA, 2.80 [95% CI, 2.59-3.02]; HR for PhenoAge, 2.25 [95% CI, 2.07-2.45]). Additive interactions were observed for T2D with 18-28% of risk attributable to BA-genetic interaction. Adding BA measures and PRS to traditional risk models significantly improved prediction for both diseases (Δ C-statistic 0.024-0.034). In conclusion, BA acceleration was positively associated with incident T2D and CAD, especially in individuals with high genetic predisposition, and improved T2D and CAD prediction beyond traditional risk factors.

摘要

与实际年龄相比,生物学年龄(BA)能更准确地反映衰老状态。在这项前瞻性英国生物银行研究中,使用克莱梅拉 - 杜巴尔法生物学年龄(KDM - BA)和表型年龄(PhenoAge)来测量BA加速。Cox模型估计BA加速与新发2型糖尿病(n = 271,885)和冠心病(n = 270,054)之间的关联。研究了BA加速与多基因风险评分(PRS)之间的加性和乘性相互作用。通过将BA、PRS及其相互作用添加到传统风险模型中来评估预测性能。BA加速与新发2型糖尿病呈正相关(KDM - BA的风险比:2.38 [95%可信区间,2.22 - 2.56];PhenoAge的风险比:1.85 [95%可信区间,1.72 - 1.99])以及与冠心病呈正相关(KDM - BA的风险比:1.67 [95%可信区间,1.58 - 1.76];PhenoAge的风险比:1.33 [95%可信区间,1.27 - 1.39])。在BA加速与PRS之间观察到显著的乘性相互作用(所有乘性相互作用的P值≤0.002)。BA加速和PRS最高的个体患2型糖尿病的风险升高最强(KDM - BA的风险比,6.89 [95%可信区间,6.03 - 7.87];PhenoAge的风险比,6.28 [95%可信区间,5.28 - 7.46])以及患冠心病的风险升高最强(KDM - BA的风险比,2.80 [95%可信区间,2.59 - 3.02];PhenoAge的风险比,2.25 [95%可信区间,2.07 - 2.45])。对于2型糖尿病观察到加性相互作用,18 - 28%的风险归因于BA - 基因相互作用。将BA测量值和PRS添加到传统风险模型中显著改善了对这两种疾病的预测(C统计量变化0.024 - 0.034)。总之,BA加速与新发2型糖尿病和冠心病呈正相关,尤其是在遗传易感性高的个体中,并且超越传统风险因素改善了2型糖尿病和冠心病的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验