Saito Yoichi, Ishikawa Mitsuru, Ohkuma Mahito, Moody Jonathan, Mabuchi Yo, Sanosaka Tsukasa, Ando Yoshinari, Yamashita Takayuki, Hon Chung Chau, Shin Jay W, Akamatsu Wado, Okano Hideyuki
Keio University Regenerative Medicine Research Center, Kawasaki 210-0821, Kanagawa, Japan.
Department of Physiology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2401387122. doi: 10.1073/pnas.2401387122. Epub 2025 Apr 29.
The direct reprogramming of cells has tremendous potential in in vitro neurological studies. Previous attempts to convert blood cells into induced neurons have presented several challenges, necessitating a less invasive, efficient, rapid, and convenient approach. The current study introduces an optimized method for converting somatic cells into neurons using a nonsurgical approach that employs peripheral blood cells as an alternative source to fibroblasts. We have demonstrated the efficacy of a unique combination of transcription factors, including NEUROD1, and four Yamanaka reprogramming factors (OCT3/4, SOX2, KLF4, and c-MYC), in generating glutamatergic neurons within 3 wk. This approach, which requires only five pivotal factors (NEUROD1, OCT3/4, SOX2, KLF4, and c-MYC), has the potential to create functional neurons and circumvents the need for induced pluripotent stem cell (iPSC) intermediates, as evidenced by single-cell RNA sequencing and whole-genome bisulfite sequencing, along with lineage-tracing experiments using Cre-LoxP system. While fibroblasts have been widely used for neuronal reprogramming, our findings suggest that peripheral blood cells offer a potential alternative, particularly in contexts where minimally invasive sampling and procedures convenient for patients are emphasized. This method provides a rapid strategy for modeling neuronal diseases and contributes to advancements in drug discovery and personalized medicine.
细胞直接重编程在体外神经学研究中具有巨大潜力。以往将血细胞转化为诱导神经元的尝试面临若干挑战,因此需要一种侵入性更小、高效、快速且便捷的方法。当前研究引入了一种优化方法,该方法采用非手术途径,以外周血细胞替代成纤维细胞作为体细胞来源,将其转化为神经元。我们已经证明,包括NEUROD1在内的转录因子与四种山中重编程因子(OCT3/4、SOX2、KLF4和c-MYC)的独特组合,能够在3周内生成谷氨酸能神经元。这种方法仅需五个关键因子(NEUROD1、OCT3/4、SOX2、KLF4和c-MYC),就有潜力创建功能性神经元,且无需诱导多能干细胞(iPSC)中间体,单细胞RNA测序、全基因组亚硫酸氢盐测序以及使用Cre-LoxP系统的谱系追踪实验均证明了这一点。虽然成纤维细胞已被广泛用于神经元重编程,但我们的研究结果表明外周血细胞是一种潜在的替代选择,尤其是在强调微创采样和方便患者的操作的情况下。该方法为神经元疾病建模提供了一种快速策略,并有助于药物发现和个性化医疗的发展。