Suppr超能文献

医学视觉问答中的结构因果模型与语言模型集成

Structure Causal Models and LLMs Integration in Medical Visual Question Answering.

作者信息

Xu Zibo, Li Qiang, Nie Weizhi, Wang Weijie, Liu Anan

出版信息

IEEE Trans Med Imaging. 2025 Aug;44(8):3476-3489. doi: 10.1109/TMI.2025.3564320.

Abstract

Medical Visual Question Answering (MedVQA) aims to answer medical questions according to medical images. However, the complexity of medical data leads to confounders that are difficult to observe, so bias between images and questions is inevitable. Such cross-modal bias makes it challenging to infer medically meaningful answers. In this work, we propose a causal inference framework for the MedVQA task, which effectively eliminates the relative confounding effect between the image and the question to ensure the precision of the question-answering (QA) session. We are the first to introduce a novel causal graph structure that represents the interaction between visual and textual elements, explicitly capturing how different questions influence visual features. During optimization, we apply the mutual information to discover spurious correlations and propose a multi-variable resampling front-door adjustment method to eliminate the relative confounding effect, which aims to align features based on their true causal relevance to the question-answering task. In addition, we also introduce a prompt strategy that combines multiple prompt forms to improve the model's ability to understand complex medical data and answer accurately. Extensive experiments on three MedVQA datasets demonstrate that 1) our method significantly improves the accuracy of MedVQA, and 2) our method achieves true causal correlations in the face of complex medical data.

摘要

医学视觉问答(MedVQA)旨在根据医学图像回答医学问题。然而,医学数据的复杂性导致存在难以观察到的混杂因素,因此图像和问题之间的偏差不可避免。这种跨模态偏差使得推断具有医学意义的答案具有挑战性。在这项工作中,我们为MedVQA任务提出了一个因果推理框架,该框架有效地消除了图像和问题之间的相对混杂效应,以确保问答(QA)环节的准确性。我们首次引入了一种新颖的因果图结构,该结构表示视觉和文本元素之间的相互作用,明确捕捉不同问题如何影响视觉特征。在优化过程中,我们应用互信息来发现虚假相关性,并提出一种多变量重采样前门调整方法来消除相对混杂效应,其目的是根据特征与问答任务的真实因果相关性来对齐特征。此外,我们还引入了一种结合多种提示形式的提示策略,以提高模型理解复杂医学数据并准确回答的能力。在三个MedVQA数据集上进行的大量实验表明:1)我们的方法显著提高了MedVQA的准确性;2)我们的方法在面对复杂医学数据时实现了真正的因果相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验