Suppr超能文献

整合机器学习与SHAP分析以推进具有定制光物理性质的苯并噻二唑衍生物的合理设计。

Integrating Machine Learning and SHAP Analysis to Advance the Rational Design of Benzothiadiazole Derivatives with Tailored Photophysical Properties.

作者信息

Veríssimo Rafael F, Matias Pedro H F, Barbosa Mateus R, Neto Flávio O S, Neto Brenno A D, de Oliveira Heibbe C B

机构信息

Laboratório de Estrutura Eletrônica e Dinâmica Molecular, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brasil.

Instituto Federal de Educação, Ciência e Tecnologia de Goiás, 72876-601 Valparaıso de Goiás, GO, Brasil.

出版信息

J Chem Inf Model. 2025 Aug 11;65(15):7874-7886. doi: 10.1021/acs.jcim.4c02414. Epub 2025 Apr 29.

Abstract

2,1,3-Benzothiadiazole (BTD) derivatives show promise in advanced photophysical applications, but designing molecules with optimal desired properties remains challenging due to complex structure-property relationships. Existing computational methods have a high cost when predicting precise photophysical characteristics. Machine learning with Morgan fingerprints was employed to forecast BTD derivative maximum absorption and emission wavelengths. Three flavors of machine learning models were applied, namely, Random Forest, LigthGBM, and XGBoost. Random forest achieved values of 0.92 for absorption and 0.89 for emission, validated internally with 10-fold cross-validations and externally with recent experimental data. SHapley Additive exPlanations (SHAP) analysis revealed critical design insights, highlighting the tertiary amine presence and solvent polarity as key drivers of red-shifted emissions. By the development of a web-based predictive tool, the potential of machine learning to accelerate molecular design is demonstrated, providing researchers a powerful approach to engineer BTD derivatives with enhanced photophysical properties.

摘要

2,1,3-苯并噻二唑(BTD)衍生物在先进的光物理应用中展现出前景,但由于复杂的结构-性质关系,设计具有最佳所需性质的分子仍然具有挑战性。现有的计算方法在预测精确的光物理特性时成本很高。采用带有摩根指纹的机器学习来预测BTD衍生物的最大吸收和发射波长。应用了三种机器学习模型,即随机森林、LightGBM和XGBoost。随机森林在吸收方面的 值为0.92,在发射方面为0.89,通过10倍交叉验证进行内部验证,并通过最近的实验数据进行外部验证。SHapley加性解释(SHAP)分析揭示了关键的设计见解,突出了叔胺的存在和溶剂极性是红移发射的关键驱动因素。通过开发基于网络的预测工具,展示了机器学习加速分子设计的潜力,为研究人员提供了一种强大的方法来设计具有增强光物理性质的BTD衍生物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验