Suppr超能文献

基于冠状动脉造影的机器学习预测中重度冠状动脉钙化患者经皮冠状动脉介入治疗的成功率:前瞻性队列研究

Prediction of Percutaneous Coronary Intervention Success in Patients With Moderate to Severe Coronary Artery Calcification Using Machine Learning Based on Coronary Angiography: Prospective Cohort Study.

作者信息

Ye Zixiang, Lin Zhangyu, Xie Enmin, Song Chenxi, Zhang Rui, Wang Hao-Yu, Shi Shanshan, Feng Lei, Duo Kefei

机构信息

Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No 167 North Lishi Road, Xicheng District, Beijing, 100037, China, 86 88398866.

State Key Laboratory of Cardiovascular Disease, Beijing, China.

出版信息

J Med Internet Res. 2025 Jul 11;27:e70943. doi: 10.2196/70943.

Abstract

BACKGROUND

Given the challenges faced during percutaneous coronary intervention (PCI) for heavily calcified lesions, accurately predicting PCI success is crucial for enhancing patient outcomes and optimizing procedural strategies.

OBJECTIVE

This study aimed to use machine learning (ML) to identify coronary angiographic vascular characteristics and PCI procedures associated with the immediate procedural success rates of PCI in patients exhibiting moderate to severe coronary artery calcification (MSCAC).

METHODS

This study included patients who underwent PCI between January 2017 and December 2018 in a cardiovascular hospital, comprising 3271 patients with MSCAC and 17,998 with no or mild coronary artery calcification. Six ML models-k-nearest neighbor, gradient boosting decision tree, Extreme Gradient Boosting (XGBoost), logistic regression, random forest, and support vector machine-were developed and validated, with synthetic minority oversampling technique used to address imbalance data. Model performance was compared using multiple parameters, and the optimal algorithm was selected. Model interpretability was facilitated by Shapley Additive Explanations (SHAP), identifying the top 6 coronary angiographic features with the highest SHAP values. The importance of different PCI procedures was also elucidated via SHAP values. Testing validation was performed in a separate cohort of 1437 patients with MSCAC in 2013. External validation was conducted in a general hospital of 204 patients with MSCAC in 2021. Sensitivity analyses were conducted in patients with acute coronary syndrome and chronic coronary syndrome.

RESULTS

In the development cohort, 7.6% (n=248) of patients with MSCAC experienced PCI failure compared to 4.3% (n=774) of patients with no or mild coronary artery calcification. The XGBoost model demonstrated superior performance, achieving the highest area under the receiver operator characteristic curve (AUC) of 0.984, average precision (AP) of 0.986, F1-score of 0.970, and G-mean of 0.970. Calibration curves indicated reliable predictive accuracy. The key predictive factors identified included lesion length, minimum lumen diameter, thrombolysis in myocardial infarction flow grade, chronic total occlusion, reference vessel diameter, and diffuse lesion (SHAP value 1.65, 1.40, 0.92, 0.60, 0.54, and 0.47, respectively). The use of modified balloons for calcified lesions had a positive effect on PCI success in patients with MSCAC (SHAP value 0.16). Sensitivity analyses showed consistent model performance across subgroups with similar top 5 coronary angiographic variables. The optimized XGBoost model maintained robust predictive performance in the testing cohort, with an AUC of 0.972, AP of 0.962, and F1-score of 0.940, and in the external validation set, with an AUC of 0.810, AP of 0.957, and F1-score of 0.892.

CONCLUSIONS

This study successfully revealed the important PCI failure risk factors, such as lesion length and modified balloons, using ML models to help clinicians manage PCI strategies in patients with complex coronary artery disease such as MSCAC.

摘要

背景

鉴于在对严重钙化病变进行经皮冠状动脉介入治疗(PCI)时面临的挑战,准确预测PCI成功对于改善患者预后和优化手术策略至关重要。

目的

本研究旨在使用机器学习(ML)来识别与中度至重度冠状动脉钙化(MSCAC)患者PCI即刻手术成功率相关的冠状动脉血管造影特征和PCI手术。

方法

本研究纳入了2017年1月至2018年12月在一家心血管医院接受PCI的患者,包括3271例MSCAC患者和17998例无或轻度冠状动脉钙化患者。开发并验证了六个ML模型——k近邻、梯度提升决策树、极端梯度提升(XGBoost)、逻辑回归、随机森林和支持向量机,使用合成少数过采样技术来处理不平衡数据。使用多个参数比较模型性能,并选择最佳算法。通过Shapley加性解释(SHAP)促进模型可解释性,识别SHAP值最高的前6个冠状动脉血管造影特征。还通过SHAP值阐明了不同PCI手术的重要性。在2013年对1437例MSCAC患者的单独队列中进行测试验证。2021年在一家综合医院对204例MSCAC患者进行外部验证。在急性冠状动脉综合征和慢性冠状动脉综合征患者中进行敏感性分析。

结果

在开发队列中,MSCAC患者中有7.6%(n = 248)PCI失败,而无或轻度冠状动脉钙化患者中有4.3%(n = 774)PCI失败。XGBoost模型表现出卓越性能,在受试者工作特征曲线(AUC)下面积最高达到0.984,平均精度(AP)为0.986,F1分数为0.970,G均值为0.970。校准曲线表明预测准确性可靠。确定的关键预测因素包括病变长度、最小管腔直径、心肌梗死溶栓血流分级、慢性完全闭塞、参考血管直径和弥漫性病变(SHAP值分别为1.65、1.40、0.92、0.60、0.54和0.47)。使用改良球囊治疗钙化病变对MSCAC患者的PCI成功有积极影响(SHAP值为0.16)。敏感性分析显示,在具有相似的前5个冠状动脉血管造影变量的亚组中,模型性能一致。优化后的XGBoost模型在测试队列中保持了强大的预测性能,AUC为0.972,AP为0.962,F1分数为0.940,在外部验证集中,AUC为0.810,AP为0.957,F1分数为0.892。

结论

本研究成功揭示了重要的PCI失败风险因素,如病变长度和改良球囊,使用ML模型帮助临床医生管理患有复杂冠状动脉疾病如MSCAC患者的PCI策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验