Suppr超能文献

基于带气管造口管兔子呼吸音的二元分类模型的实时气道监测系统

Real-time airway monitoring system using binary classification model based on respiratory sounds of rabbits with a tracheostomy tube.

作者信息

Jung Yohan, Kim Hyunbum, Koh Daeyeon, Han Hyunjun, Kim Minhyeong, Joo Young-Hoon, Kim Jongbaeg

机构信息

School of Mechanical Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea.

出版信息

Sci Rep. 2025 Apr 29;15(1):15014. doi: 10.1038/s41598-025-98546-3.

Abstract

Tracheostomy is a medical procedure used to ensure airway integrity. As patients with tracheostomies produce excess secretions obstructing the airway, proper airway management is required. Medical staff primarily assess airway status through respiratory sounds, but this assessment heavily depends on their experience and expertise. Therefore, a continuous and standardized airway assessment system is needed, and it would be even more beneficial if it could operate in real time. Due to challenges in obtaining controlled respiratory sound data from humans, respiratory sounds from rabbits with tracheostomy tubes were utilized. Airway obstruction was induced using artificial sputum. Collected respiratory sound samples were converted into spectrograms and analyzed via deep learning. A total of 1,443 respiratory cycles, representing 402 samples of 4-second respiratory sound segments, were recorded from 29 New Zealand rabbits. The trained convolutional neural network (CNN) binary classification model, evaluated on the validation dataset, achieved an accuracy of 0.9375 and an area under the receiver operating characteristic (ROC) curve of 0.9900 in classifying normal and obstructive respiratory sound samples. Furthermore, in testing experiments simulating a medical scenario, the developed Internet-of-Things-based device enabled real-time remote data transmission. As a result, 42 respiratory sound samples from two rabbits, collected using the developed device, were used as the testing dataset for the CNN classification model, which achieved an accuracy of 0.9524 and an area under the ROC curve of 0.9953. This is the first study using deep learning to assess the airway condition of rabbits with tracheostomy tubes, suggesting potential applications in human airway monitoring.

摘要

气管切开术是一种用于确保气道完整性的医疗程序。由于气管切开术患者会产生过多分泌物阻塞气道,因此需要进行适当的气道管理。医护人员主要通过呼吸音评估气道状况,但这种评估很大程度上依赖于他们的经验和专业知识。因此,需要一个持续且标准化的气道评估系统,如果它能够实时运行则会更有益处。由于从人类获取可控呼吸音数据存在挑战,因此利用了带有气管造口管的兔子的呼吸音。使用人工痰液诱导气道阻塞。收集到的呼吸音样本被转换为频谱图并通过深度学习进行分析。从29只新西兰兔身上记录了总共1443个呼吸周期,代表402个4秒呼吸音段的样本。在验证数据集上评估的经过训练的卷积神经网络(CNN)二元分类模型,在对正常和阻塞性呼吸音样本进行分类时,准确率达到0.9375,受试者操作特征(ROC)曲线下面积为0.9900。此外,在模拟医疗场景的测试实验中,所开发的基于物联网的设备实现了实时远程数据传输。结果,使用所开发的设备从两只兔子身上收集的42个呼吸音样本被用作CNN分类模型的测试数据集,该模型的准确率达到0.9524,ROC曲线下面积为0.9953。这是第一项使用深度学习评估带有气管造口管的兔子气道状况的研究,表明其在人类气道监测中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f88/12041265/dd923824f6dd/41598_2025_98546_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验