Suppr超能文献

使用深度神经网络进行气管声音分析以检测睡眠呼吸暂停。

Tracheal Sound Analysis Using a Deep Neural Network to Detect Sleep Apnea.

机构信息

Sleep Disorders Centre, National Hospital Organization Fukuoka National Hospital, Yakatabaru, Minmi-ku, Fukuoka City, Japan.

Department of Public Health, Graduate School of Medicine, Juntendo University, Hongo, Bunkyo-ku, Tokyo, Japan.

出版信息

J Clin Sleep Med. 2019 Aug 15;15(8):1125-1133. doi: 10.5664/jcsm.7804.

Abstract

STUDY OBJECTIVES

Portable devices for home sleep apnea testing are often limited by their inability to discriminate sleep/wake status, possibly resulting in underestimations. Tracheal sound (TS), which can be visualized as a spectrogram, carries information about apnea/hypopnea and sleep/wake status. We hypothesized that image analysis of all-night TS recordings by a deep neural network (DNN) would be capable of detecting breathing events and classifying sleep/wake status. The aim of this study is to develop a DNN-based system for sleep apnea testing and validate it using a large sampling of polysomnography (PSG) data.

METHODS

PSG examinations for the evaluation of sleep-disordered breathing (SDB) were performed for 1,852 patients: 1,548 PSG records were used to develop the system, and the remaining 304 records were used for validation. TS spectrogram images were obtained every 60 seconds and labeled with the PSG scoring results (breathing event and sleep/wake status), then introduced to DNN learning. Two different DNNs were trained for breathing status and sleep/wake status, respectively.

RESULTS

A DNN with convolutional layers showed the best performance for discriminating breathing status. The same DNN structure was trained for sleep/wake discrimination. In the validation study, the DNN analysis was capable of discriminating the sleep/wake status with reasonable accuracy. The diagnostic sensitivity, specificity, and area under the receiver operating characteristic curves for diagnosis of SDB with apnea-hypopnea index of > 5, 15, and 30 were 0.98, 0.76, and 0.99; 0.97, 0.90, and 0.99; and 0.92, 0.94, and 0.98, respectively.

CONCLUSIONS

The developed system using the TS DNN analysis has a good performance for SDB testing.

CITATION

Nakano H, Furukawa T, Tanigawa T. Tracheal sound analysis using a deep neural network to detect sleep apnea. J Clin Sleep Med. 2019;15(8): 1125-1133.

摘要

研究目的

家用睡眠呼吸暂停检测便携设备常因无法区分睡眠/觉醒状态而受到限制,这可能导致低估检测结果。气管音(TS)可被可视化作为声谱图,其携带关于呼吸暂停/低通气和睡眠/觉醒状态的信息。我们假设,通过深度神经网络(DNN)对整晚的 TS 记录进行图像分析,将能够检测呼吸事件并对睡眠/觉醒状态进行分类。本研究旨在开发一种基于 DNN 的睡眠呼吸暂停检测系统,并使用大量睡眠多导图(PSG)数据对其进行验证。

方法

对 1852 名患有睡眠呼吸障碍(SDB)的患者进行了 PSG 检查:使用 1548 份 PSG 记录来开发系统,剩余的 304 份记录用于验证。每 60 秒获取一次 TS 声谱图图像,并根据 PSG 评分结果(呼吸事件和睡眠/觉醒状态)进行标记,然后引入 DNN 学习。分别为呼吸状态和睡眠/觉醒状态训练了两个不同的 DNN。

结果

具有卷积层的 DNN 在区分呼吸状态方面表现最佳。使用相同的 DNN 结构对睡眠/觉醒状态进行分类。在验证研究中,DNN 分析能够以合理的准确度区分睡眠/觉醒状态。对于以呼吸暂停低通气指数 > 5、15 和 30 为诊断标准的 SDB 诊断,DNN 分析的诊断灵敏度、特异性和受试者工作特征曲线下面积分别为 0.98、0.76 和 0.99;0.97、0.90 和 0.99;0.92、0.94 和 0.98。

结论

使用 TS DNN 分析开发的系统具有良好的睡眠呼吸暂停检测性能。

引文

Nakano H, Furukawa T, Tanigawa T. Tracheal sound analysis using a deep neural network to detect sleep apnea. J Clin Sleep Med. 2019;15(8): 1125-1133.

相似文献

1
Tracheal Sound Analysis Using a Deep Neural Network to Detect Sleep Apnea.
J Clin Sleep Med. 2019 Aug 15;15(8):1125-1133. doi: 10.5664/jcsm.7804.
5
A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing.
Biomed Eng Online. 2024 May 5;23(1):45. doi: 10.1186/s12938-024-01240-0.
7
Snoring sound classification from respiratory signal.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3215-3218. doi: 10.1109/EMBC.2016.7591413.
9
Sleep Apnea Detection by Tracheal Motion and Sound, and Oximetry via Application of Deep Neural Networks.
Nat Sci Sleep. 2023 May 30;15:423-432. doi: 10.2147/NSS.S397196. eCollection 2023.
10
Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques.
Biomed Eng Online. 2018 Feb 1;17(1):16. doi: 10.1186/s12938-018-0448-x.

引用本文的文献

3
Snoring, obstructive sleep apnea, and upper respiratory tract infection in elementary school children in Japan.
Sleep Breath. 2024 May;28(2):629-637. doi: 10.1007/s11325-023-02932-y. Epub 2023 Oct 14.
4
Systematic review of automated sleep apnea detection based on physiological signal data using deep learning algorithm: a meta-analysis approach.
Biomed Eng Lett. 2023 Jul 5;13(3):293-312. doi: 10.1007/s13534-023-00297-5. eCollection 2023 Aug.
6
End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices.
Nat Sci Sleep. 2022 Jun 25;14:1187-1201. doi: 10.2147/NSS.S361270. eCollection 2022.
7
9
A novel system that continuously visualizes and analyzes respiratory sounds to promptly evaluate upper airway abnormalities: a pilot study.
J Clin Monit Comput. 2022 Feb;36(1):221-226. doi: 10.1007/s10877-020-00641-5. Epub 2021 Jan 18.
10
Sleep/Wakefulness Detection Using Tracheal Sounds and Movements.
Nat Sci Sleep. 2020 Nov 17;12:1009-1021. doi: 10.2147/NSS.S276107. eCollection 2020.

本文引用的文献

1
Snore Sound Analysis Can Detect the Presence of Obstructive Sleep Apnea Specific to NREM or REM Sleep.
J Clin Sleep Med. 2018 Jun 15;14(6):991-1003. doi: 10.5664/jcsm.7168.
2
A Novel Artificial Neural Network Based Sleep-Disordered Breathing Screening Tool.
J Clin Sleep Med. 2018 Jun 15;14(6):1063-1069. doi: 10.5664/jcsm.7182.
4
Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques.
Biomed Eng Online. 2018 Feb 1;17(1):16. doi: 10.1186/s12938-018-0448-x.
6
Screening patients for risk of sleep apnea using facial photographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2006-2009. doi: 10.1109/EMBC.2017.8037245.
7
Clinical Use of a Home Sleep Apnea Test: An American Academy of Sleep Medicine Position Statement.
J Clin Sleep Med. 2017 Oct 15;13(10):1205-1207. doi: 10.5664/jcsm.6774.
8
Obstructive Sleep Apnea Screening Using a Piezo-Electric Sensor.
J Korean Med Sci. 2017 Jun;32(6):893-899. doi: 10.3346/jkms.2017.32.6.893.
9
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验