Rastgar Mohaddeseh, Ghasemi Zahra, Samari Fayezeh
Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7916193145, Iran.
Nanoscience, Nanotechnology, and Advanced Materials Research Centre, University of Hormozgan, Bandar Abbas, Iran.
Sci Rep. 2025 Apr 29;15(1):15110. doi: 10.1038/s41598-025-98442-w.
The development of environmentally sustainable and non-toxic visible-light (VL) sensitive nanostructured photocatalysts is a significant focus in nanotechnology, necessitating safe synthesis techniques for these nanocomposites. This study introduces a straightforward and low-temperature biosynthesis process using leaf extract from the Avicennia marina mangrove (MTLE) and red soil from Hormoz Island, Iran to produce Ag/AgCl-decorated magnetic ZnO@FeO, a plasmonic triple heterojunction nanocomposite (NC). The biosynthesized Ag/AgCl/ZnO@FeO magnetic NC (BSNC) exhibited a particle size of ~ 60 nm, a magnetization of 8.04 emu.g, and a band gap energy (Eg) of 1.3 eV, optimized at an MTLE concentration of 0.5 g·100 mL. The concentration of MTLE significantly influenced the properties of the products, acting as a reducing and stabilizing agent. As MTLE concentration increased from 0.125 to 0.5 g·100 mL, VL light absorption intensity improved, alongside changes in Eg, suggesting an optimal concentration for enhanced photocatalytic activity. The BSNC demonstrated a broad absorption peak between 400 and 600 nm, attributed to surface plasmon resonance and electron dynamics involving Ag/AgCl and ZnO. This biosynthetic approach offers an eco-friendly alternative for producing Ag/AgCl/ZnO@FeO plasmonic NCs with improved VL photo-activity.
开发环境可持续且无毒的可见光(VL)敏感纳米结构光催化剂是纳米技术的一个重要研究重点,这就需要为这些纳米复合材料采用安全的合成技术。本研究介绍了一种简单的低温生物合成方法,该方法使用来自红海榄红树林(MTLE)的叶提取物和伊朗霍尔木兹岛的红土来制备Ag/AgCl修饰的磁性ZnO@FeO,一种等离子体三重异质结纳米复合材料(NC)。生物合成的Ag/AgCl/ZnO@FeO磁性NC(BSNC)的粒径约为60 nm,磁化强度为8.04 emu·g,带隙能量(Eg)为1.3 eV,在MTLE浓度为0.5 g·100 mL时达到优化。MTLE的浓度对产物的性能有显著影响,它作为还原剂和稳定剂发挥作用。随着MTLE浓度从0.125增加到0.5 g·100 mL,VL光吸收强度提高,同时Eg也发生变化,这表明存在一个增强光催化活性的最佳浓度。BSNC在400至600 nm之间表现出一个宽吸收峰,这归因于涉及Ag/AgCl和ZnO的表面等离子体共振和电子动力学。这种生物合成方法为生产具有增强VL光活性的Ag/AgCl/ZnO@FeO等离子体NCs提供了一种环保替代方案。