文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生物信息学和机器学习方法鉴定与弥漫性大B细胞淋巴瘤相关的M2巨噬细胞相关基因。

Identification of M2 macrophage-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches.

作者信息

Zhang Jiayi, Jia Zhixiang, Zhang Jiahui, Mu Xiaohui, Ai Limei

机构信息

Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.

Medical College, Sanmenxia Vocational and Technical College, Sanmenxia, China.

出版信息

Biol Direct. 2025 Apr 29;20(1):58. doi: 10.1186/s13062-025-00649-4.


DOI:10.1186/s13062-025-00649-4
PMID:40302006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12039291/
Abstract

M2 macrophages play a crucial role in the initiation and progression of various tumors, including diffuse large B-cell lymphoma (DLBCL). However, the characterization of M2 macrophage-related genes in DLBCL remains incomplete. In this study, we downloaded DLBCL-related datasets from the Gene Expression Omnibus (GEO) database and identified 77 differentially expressed genes (DEGs) between the control group and the treat group. We assessed the immune cell infiltration using CIBERSORT analysis and identified modules associated with M2 macrophages through weighted gene co-expression network analysis (WGCNA). Using the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest (RF) algorithms, we screened for seven potential diagnostic biomarkers with strong diagnostic capabilities: SMAD3, IL7R, IL18, FAS, CD5, CCR7, and CSF1R. Subsequently, the constructed logistic regression model and nomogram demonstrated robust predictive performance. We further investigated the expression levels, prognostic values, and biological functions of these biomarkers. The results showed that SMAD3, IL7R, IL18, FAS and CD5 were associated with the survival of DLBCL patients and could be used as markers to predict the prognosis of DLBCL. Our study introduces a novel diagnostic strategy and provides new insights into the potential mechanisms underlying DLBCL. However, further validation of the practical value of these genes in DLBCL diagnosis is warranted before clinical application.

摘要

M2巨噬细胞在包括弥漫性大B细胞淋巴瘤(DLBCL)在内的各种肿瘤的发生和发展中起着关键作用。然而,DLBCL中M2巨噬细胞相关基因的特征仍不完整。在本研究中,我们从基因表达综合数据库(GEO)下载了与DLBCL相关的数据集,并确定了对照组和治疗组之间的77个差异表达基因(DEG)。我们使用CIBERSORT分析评估免疫细胞浸润,并通过加权基因共表达网络分析(WGCNA)确定与M2巨噬细胞相关的模块。使用最小绝对收缩和选择算子(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林(RF)算法,我们筛选出了七个具有强大诊断能力的潜在诊断生物标志物:SMAD3、IL7R、IL18、FAS、CD5、CCR7和CSF1R。随后,构建的逻辑回归模型和列线图显示出强大的预测性能。我们进一步研究了这些生物标志物的表达水平、预后价值和生物学功能。结果表明,SMAD3、IL7R、IL18、FAS和CD5与DLBCL患者的生存相关,可作为预测DLBCL预后的标志物。我们的研究引入了一种新的诊断策略,并为DLBCL潜在机制提供了新的见解。然而,在临床应用之前,有必要进一步验证这些基因在DLBCL诊断中的实际价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/dccce749933b/13062_2025_649_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/3e35f9454f40/13062_2025_649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/a7bf18849bca/13062_2025_649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/92de4ce18c29/13062_2025_649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/c35a76c20bcf/13062_2025_649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/855fdfbbb102/13062_2025_649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/ded3903c3c3c/13062_2025_649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/c287a500b12e/13062_2025_649_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/06b6ceb98fb0/13062_2025_649_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/dccce749933b/13062_2025_649_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/3e35f9454f40/13062_2025_649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/a7bf18849bca/13062_2025_649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/92de4ce18c29/13062_2025_649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/c35a76c20bcf/13062_2025_649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/855fdfbbb102/13062_2025_649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/ded3903c3c3c/13062_2025_649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/c287a500b12e/13062_2025_649_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/06b6ceb98fb0/13062_2025_649_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efda/12039291/dccce749933b/13062_2025_649_Fig9_HTML.jpg

相似文献

[1]
Identification of M2 macrophage-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches.

Biol Direct. 2025-4-29

[2]
Identification of ferroptosis-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches.

Int J Biol Macromol. 2024-12

[3]
CCL8 as a promising prognostic factor in diffuse large B-cell lymphoma M2 macrophage interactions: A bioinformatic analysis of the tumor microenvironment.

Front Immunol. 2022

[4]
Integrative bioinformatics and machine learning identify key crosstalk genes and immune interactions in head and neck cancer and Hodgkin lymphoma.

Sci Rep. 2025-5-6

[5]
Identification and validation of immune-related biomarkers and polarization types of macrophages in keloid based on bulk RNA-seq and single-cell RNA-seq analysis.

Burns. 2025-4

[6]
Identification of novel biomarkers and immune infiltration characteristics of ischemic stroke based on comprehensive bioinformatic analysis and machine learning.

Biochem Biophys Rep. 2023-12-7

[7]
Single-cell sequencing in diffuse large B-cell lymphoma: C1qC is a potential tumor-promoting factor.

Int Immunopharmacol. 2024-12-25

[8]
Cuproptosis-related lncRNA signature as a prognostic tool and therapeutic target in diffuse large B cell lymphoma.

Sci Rep. 2024-6-5

[9]
Natural killer cell-associated prognosis model characterizes immune landscape and treatment efficacy of diffuse large B cell lymphoma.

Cytokine. 2024-10

[10]
Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis.

Front Immunol. 2024

本文引用的文献

[1]
Identification of ferroptosis-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches.

Int J Biol Macromol. 2024-12

[2]
Tumour Microenvironment: The General Principles of Pathogenesis and Implications in Diffuse Large B Cell Lymphoma.

Cells. 2024-6-18

[3]
Tumor-derived Exosomal ENO2 Modulates Polarization of Tumor-associated Macrophages through Reprogramming Glycolysis to Promote Progression of Diffuse Large B-cell Lymphoma.

Int J Biol Sci. 2024

[4]
Metabolism, metabolites, and macrophages in cancer.

J Hematol Oncol. 2023-7-25

[5]
Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting.

Int J Mol Sci. 2023-4-19

[6]
Current updates on generations, approvals, and clinical trials of CAR T-cell therapy.

Hum Vaccin Immunother. 2022-11-30

[7]
A novel immune-related epigenetic signature based on the transcriptome for predicting the prognosis and therapeutic response of patients with diffuse large B-cell lymphoma.

Clin Immunol. 2022-10

[8]
The identification of TCF1+ progenitor exhausted T cells in THRLBCL may predict a better response to PD-1/PD-L1 blockade.

Blood Adv. 2022-8-9

[9]
S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation.

J Immunother Cancer. 2021-6

[10]
Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy.

Biologics. 2021-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索