Shen Maoqiang, Liu Yang, Gao Xinyue, Liu Xuesen, Zhao Yanhao, Hou Linrui, Yuan Changzhou
School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.
Small Methods. 2025 Aug;9(8):e2500157. doi: 10.1002/smtd.202500157. Epub 2025 Apr 29.
Typical shuttle effect of lithium polysulfides (LiPSs) and slow kinetics of redox reactions seriously hinder the potential application of lithium-sulfur batteries (LSBs). Herein, a titanium based ternary accordion heterostructure (i.e., TiC-TiN-TiO) is first fabricated through an acid-assisted eutectoid reaction of TiCN MXene obtained via efficiently gas-etching of TiAlCN MAX. The in situ crystal reconstruction not only creates functional sur/interface configuration but generates built-in electric field (BIEF) at the crystal interfaces, which induce interfacial charge redistribution and accelerate electronic/ionic conductions of the whole heterostructures. Besides, the well-defined functions of conductive TiC, adsorptive TiO, and catalytic TiN enable the efficient fixation and conversion of LiPSs. Accordingly, LSBs assembled with the TiC-TiN-TiO modified separators demonstrate a remarkable reversible capacity of 1185 mAh g at 0.5 C, and an outstanding capacity retention of 778 mAh g after 500 cycles with a decay rate of 0.078% per cycle. Moreover, excellent rate capability (838 mAh g at 5 C) and superior cycling stability with high sulfur loading (3.7 mg cm) and low electrolyte/sulfur ratio (6.0 µL mg) are also achieved. More significantly, the eutectoid reaction of solid solution MXenes it devised here provides an innovative avenue to design functional hierarchical heterostructures for high-performance LSBs and beyond.
多硫化锂(LiPSs)典型的穿梭效应和氧化还原反应的缓慢动力学严重阻碍了锂硫电池(LSBs)的潜在应用。在此,通过对经高效气体蚀刻TiAlCN MAX获得的TiCN MXene进行酸辅助共析反应,首次制备了一种钛基三元手风琴异质结构(即TiC-TiN-TiO)。原位晶体重构不仅创造了功能性的表面/界面结构,还在晶体界面处产生了内建电场(BIEF),这会引起界面电荷重新分布并加速整个异质结构的电子/离子传导。此外,导电的TiC、吸附性的TiO和催化性的TiN明确的功能能够实现LiPSs的高效固定和转化。因此,用TiC-TiN-TiO改性隔膜组装的LSBs在0.5 C下表现出1185 mAh g的显著可逆容量,在500次循环后容量保持率为778 mAh g,每次循环的衰减率为0.078%。此外,还实现了优异的倍率性能(5 C下为838 mAh g)以及在高硫负载(3.7 mg cm)和低电解液/硫比(6.0 μL mg)下的卓越循环稳定性。更重要的是,这里设计的固溶体MXenes的共析反应为设计用于高性能LSBs及其他领域的功能性分级异质结构提供了一条创新途径。