He Danqi, Zhang Xiaopeng, Chen Lishai, Wei Ping, Zhu Wanting, Nie Xiaolei, Zhai Pengcheng, Huang Yunhui, Zhao Wenyu
Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
Adv Mater. 2025 Jul;37(30):e2500457. doi: 10.1002/adma.202500457. Epub 2025 May 13.
The practical deployment of lithium-sulfur (Li-S) batteries has been impeded by the shuttle effect and sluggish kinetics of lithium polysulfide (LiPSs) conversion. Here, BiSbTe/carbon nanotubes (BST/CNT) interlayer is designed to enhance the durability of Li-S batteries by providing extensive adsorption sites and generating a thermoelectric field from BST thermoelectric material. Experimental and density functional theory investigations confirm the superior adsorption properties of BST. Additionally, analyses using Gibbs free energy and cyclic voltammetry robustly demonstrate that the thermoelectric field significantly accelerates the conversion kinetics of LiPSs. The electrochemical performance of cells equipped with a 20% BST interlayer is exceptional, showing remarkable stability over 500 cycles at 1 C with a minimal capacity decay rate of 0.05% per cycle. Most importantly, the thermoelectric field substantially improves the conversion kinetics of LiPSs, allowing the cell to maintain a discharge capacity of 594 mAh g even at 10 C. Furthermore, under conditions of high sulfur loading (7.0 mg cm) and low electrolyte-to-sulfur ratio (6.1 µL mg), the cell achieves an areal capacity of 5.9 mAh cm. This research not only evidences the effectiveness of the thermoelectric field in enhancing the conversion kinetics of LiPSs but also shows its potential to boost the performance of Li-S batteries.
锂硫(Li-S)电池的实际应用受到多硫化锂(LiPSs)穿梭效应和缓慢动力学的阻碍。在此,设计了BiSbTe/碳纳米管(BST/CNT)中间层,通过提供大量吸附位点并利用BST热电材料产生热电场来提高Li-S电池的耐久性。实验和密度泛函理论研究证实了BST具有优异的吸附性能。此外,通过吉布斯自由能和循环伏安法分析有力地证明,热电场显著加速了LiPSs的转化动力学。配备20%BST中间层的电池的电化学性能优异,在1C下500次循环中表现出显著的稳定性,最小容量衰减率为每循环0.05%。最重要的是,热电场大大改善了LiPSs的转化动力学,使电池即使在10C时仍能保持594 mAh g的放电容量。此外,在高硫负载(7.0 mg cm)和低电解液与硫比(6.1 µL mg)的条件下,电池实现了5.9 mAh cm的面积容量。这项研究不仅证明了热电场在增强LiPSs转化动力学方面的有效性,还展示了其提升Li-S电池性能的潜力。