Suppr超能文献

DTC-m6Am:一种基于密集连接网络和注意力机制的非平衡分类模式下识别N6,2'-O-二甲基腺苷位点的框架。

DTC-m6Am: A Framework for Recognizing N6,2'-O-dimethyladenosine Sites in Unbalanced Classification Patterns Based on DenseNet and Attention Mechanisms.

作者信息

Huang Hui, Zhou Fenglin, Jia Jianhua, Zhang Huachun

机构信息

School of Information Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, Jiangxi, China.

出版信息

Front Biosci (Landmark Ed). 2025 Apr 24;30(4):36603. doi: 10.31083/FBL36603.

Abstract

BACKGROUND

mAm is a specific RNA modification that plays an important role in regulating mRNA stability, translational efficiency, and cellular stress response. mAm's precise identification is essential to gain insight into its functional mechanisms at transcriptional and post-transcriptional levels. Due to the limitations of experimental assays, the development of efficient computational tools to predict mAm sites has become a major focus of research, offering potential breakthroughs in RNA epigenetics. In this study, we present a robust and reliable deep learning model, DTC-m6Am, for identifying mAm sites across the transcriptome.

METHODS

Our proposed DTC-m6Am model first represents RNA sequences by One-Hot coding to capture base-based features and provide structured inputs for subsequent deep learning models. The model then combines densely connected convolutional networks (DenseNet) and temporal convolutional network (TCN). The DenseNet module leverages its dense connectivity property to effectively extract local features and enhance information flow, whereas the TCN module focuses on capturing global time series dependencies to enhance the modeling capability for long sequence features. To further optimize feature extraction, the Convolutional Block Attention Module (CBAM) is used to focus on key regions through spatial and channel attention mechanisms. Finally, a fully connected layer is used for the classification task to achieve accurate prediction of the mAm site. For the data imbalance problem, we use the focal loss function to balance the learning effect of positive and negative samples and improve the performance of the model on imbalanced data.

RESULTS

The deep learning-based DTC-m6Am model performs well on all evaluation metrics, achieving 87.8%, 50.3%, 69.1%, 41.1%, and 76.5% for sensitivity (Sn), specificity (Sp), accuracy (ACC), Mathew's correlation coefficient (MCC), and area under the curve (AUC), respectively, on the independent test set.

CONCLUSIONS

We critically evaluated the performance of DTC-m6Am using 10-fold cross-validation and independent testing and compared it to existing methods. The MCC value of 41.1% was achieved when using the independent test, which is 19.7% higher than the current state-of-the-art prediction method, m6Aminer. The results indicate that the DTC-m6Am model has high accuracy and stability and is an effective tool for predicting mAm sites.

摘要

背景

m6Am是一种特定的RNA修饰,在调节mRNA稳定性、翻译效率和细胞应激反应中发挥重要作用。m6Am的精确识别对于深入了解其在转录和转录后水平的功能机制至关重要。由于实验检测方法的局限性,开发高效的计算工具来预测m6Am位点已成为研究的主要焦点,有望在RNA表观遗传学领域取得突破。在本研究中,我们提出了一种强大且可靠的深度学习模型DTC-m6Am,用于识别转录组中的m6Am位点。

方法

我们提出的DTC-m6Am模型首先通过独热编码表示RNA序列,以捕获基于碱基的特征,并为后续的深度学习模型提供结构化输入。然后,该模型结合了密集连接卷积网络(DenseNet)和时间卷积网络(TCN)。DenseNet模块利用其密集连接属性有效提取局部特征并增强信息流,而TCN模块专注于捕获全局时间序列依赖性,以增强对长序列特征的建模能力。为了进一步优化特征提取,使用卷积块注意力模块(CBAM)通过空间和通道注意力机制聚焦于关键区域。最后,使用全连接层进行分类任务,以实现对m6Am位点的准确预测。对于数据不平衡问题,我们使用焦点损失函数来平衡正样本和负样本的学习效果,并提高模型在不平衡数据上的性能。

结果

基于深度学习的DTC-m6Am模型在所有评估指标上表现良好,在独立测试集上的灵敏度(Sn)、特异性(Sp)、准确率(ACC)、马修斯相关系数(MCC)和曲线下面积(AUC)分别达到87.8%、50.3%、69.1%、41.1%和76.5%。

结论

我们使用10折交叉验证和独立测试对DTC-m6Am的性能进行了严格评估,并将其与现有方法进行了比较。使用独立测试时,MCC值达到41.1%,比当前最先进的预测方法m6Aminer高19.7%。结果表明,DTC-m6Am模型具有较高的准确性和稳定性,是预测m6Am位点的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验