Suppr超能文献

基于堆积集深度学习的 N6,2'-O-二甲基腺苷位点识别。

EMDL_m6Am: identifying N6,2'-O-dimethyladenosine sites based on stacking ensemble deep learning.

机构信息

School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.

出版信息

BMC Bioinformatics. 2023 Oct 25;24(1):397. doi: 10.1186/s12859-023-05543-2.

Abstract

BACKGROUND

N6, 2'-O-dimethyladenosine (mAm) is an abundant RNA methylation modification on vertebrate mRNAs and is present in the transcription initiation region of mRNAs. It has recently been experimentally shown to be associated with several human disorders, including obesity genes, and stomach cancer, among others. As a result, N6,2'-O-dimethyladenosine (mAm) site will play a crucial part in the regulation of RNA if it can be correctly identified.

RESULTS

This study proposes a novel deep learning-based mAm prediction model, EMDL_m6Am, which employs one-hot encoding to expressthe feature map of the RNA sequence and recognizes mAm sites by integrating different CNN models via stacking. Including DenseNet, Inflated Convolutional Network (DCNN) and Deep Multiscale Residual Network (MSRN), the sensitivity (Sn), specificity (Sp), accuracy (ACC), Mathews correlation coefficient (MCC) and area under the curve (AUC) of our model on the training data set reach 86.62%, 88.94%, 87.78%, 0.7590 and 0.8778, respectively, and the prediction results on the independent test set are as high as 82.25%, 79.72%, 80.98%, 0.6199, and 0.8211.

CONCLUSIONS

In conclusion, the experimental results demonstrated that EMDL_m6Am greatly improved the predictive performance of the mAm sites and could provide a valuable reference for the next part of the study. The source code and experimental data are available at: https://github.com/13133989982/EMDL-m6Am .

摘要

背景

N6,2'-O-二甲基腺苷(mAm)是脊椎动物 mRNA 中丰富的 RNA 甲基化修饰,存在于 mRNA 的转录起始区域。最近的实验表明,它与包括肥胖基因和胃癌在内的几种人类疾病有关。因此,如果能够正确识别 N6,2'-O-二甲基腺苷(mAm)位点,它将在 RNA 的调控中发挥至关重要的作用。

结果

本研究提出了一种新的基于深度学习的 mAm 预测模型 EMDL_m6Am,它采用独热编码来表示 RNA 序列的特征图,并通过堆叠集成不同的 CNN 模型来识别 mAm 位点。包括 DenseNet、Inflated Convolutional Network(DCNN)和 Deep Multiscale Residual Network(MSRN),我们的模型在训练数据集上的灵敏度(Sn)、特异性(Sp)、准确性(ACC)、马修斯相关系数(MCC)和曲线下面积(AUC)分别达到 86.62%、88.94%、87.78%、0.7590 和 0.8778,而在独立测试数据集上的预测结果高达 82.25%、79.72%、80.98%、0.6199 和 0.8211。

结论

总之,实验结果表明,EMDL_m6Am 极大地提高了 mAm 位点的预测性能,可以为下一步研究提供有价值的参考。源代码和实验数据可在 https://github.com/13133989982/EMDL-m6Am 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e101/10598967/88eab4804a77/12859_2023_5543_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验