Suppr超能文献

通过对巴基斯坦吉尔吉特-巴尔蒂斯坦地区10000多户家庭的横断面调查和基于症状的机器学习模型估算未确诊的新冠肺炎病例数。

Estimation of unconfirmed COVID-19 cases from a cross-sectional survey of >10 000 households and a symptom-based machine learning model in Gilgit-Baltistan, Pakistan.

作者信息

Farrar Daniel S, Pell Lisa G, Muhammad Yasin, Hafiz Khan Sher, Erdman Lauren, Bassani Diego G, Tanner Zachary, Chauhadry Imran Ahmed, Karim Muhammad, Madhani Falak, Paracha Shariq, Ali Khan Masood, Soofi Sajid, Taljaard Monica, Spitzer Rachel F, Abu Fadaleh Sarah M, Bhutta Zulfiqar A, Morris Shaun K

机构信息

Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada.

Gilgit Regional Office, Aga Khan Health Service Pakistan, Gilgit, Gilgit-Baltistan, Pakistan.

出版信息

BMJ Public Health. 2025 Apr 28;3(1):e001255. doi: 10.1136/bmjph-2024-001255. eCollection 2025 Jan.

Abstract

INTRODUCTION

Robust estimates of COVID-19 prevalence in settings with limited capacity for SARS-CoV-2 molecular and serologic testing are scarce. We aimed to describe the epidemiology of confirmed and probable COVID-19 in Gilgit-Baltistan, and to develop a symptom-based predictive model to identify infected but undiagnosed individuals with COVID-19.

METHODS

We conducted a cross-sectional survey in 10 257 randomly selected households in Gilgit-Baltistan from June to August 2021. Data regarding SARS-CoV-2 testing, healthcare worker (HCW) diagnoses, symptoms and outcomes since March 2020 were self-reported by households. 'Confirmed/probable' infection was defined as a positive test, HCW COVID-19 diagnosis or HCW pneumonia diagnosis with COVID-19-positive contact. Robust Poisson regression was conducted to assess differences in symptoms, outcomes and SARS-CoV-2 testing rates. We developed a symptom-based machine learning model to differentiate confirmed/probable infections from those with negative tests. We applied this model to untested respondents to estimate the total prevalence of SARS-CoV-2 infection.

RESULTS

Data were collected for 77 924 people. Overall, 314 (0.5%) had confirmed/probable infections, 3263 (4.4%) had negative tests and 74 347 (95.1%) were untested. Children were tested less often than adults (adjusted prevalence ratio (aPR) 0.08, 95% CI 0.06 to 0.12 for ages 1-4 years vs 30-39 years), while males were tested more often than females (aPR 1.51, 95% CI 1.40 to 1.63). In the predictive model, area under the receiver operating characteristic curve was 0.92 (95% CI 0.90 to 0.93). We estimate there were 8-17 total SARS-CoV-2 infections for each positive test (8-17:1). The ratio of estimated to confirmed cases was higher for ages 1-4 years (211-480:1), 5-9 years (80-185:1) and for females (13-25:1).

CONCLUSIONS

From March 2020 to August 2021, the majority of SARS-CoV-2 infections in Gilgit-Baltistan went unconfirmed, particularly among women and children. Predictive models which incorporate self-reported symptoms may improve understanding of the burden of disease in settings lacking diagnostic capacity.

摘要

引言

在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)分子和血清学检测能力有限的情况下,对新冠病毒病(COVID-19)患病率的可靠估计很少。我们旨在描述吉尔吉特-巴尔蒂斯坦确诊和疑似COVID-19的流行病学情况,并建立一个基于症状的预测模型,以识别感染但未确诊的COVID-19患者。

方法

2021年6月至8月,我们在吉尔吉特-巴尔蒂斯坦随机抽取的10257户家庭中进行了一项横断面调查。自2020年3月以来,家庭自行报告了有关SARS-CoV-2检测、医护人员诊断、症状和结果的数据。“确诊/疑似”感染定义为检测呈阳性、医护人员诊断为COVID-19或医护人员诊断为肺炎且有COVID-19阳性接触史。采用稳健泊松回归分析评估症状、结果和SARS-CoV-2检测率的差异。我们建立了一个基于症状的机器学习模型,以区分确诊/疑似感染与检测阴性者。我们将此模型应用于未接受检测的受访者,以估计SARS-CoV-2感染的总患病率。

结果

共收集了77924人的数据。总体而言,314人(0.5%)确诊/疑似感染,3263人(4.4%)检测呈阴性,74347人(95.1%)未接受检测。儿童接受检测的频率低于成人(1至4岁儿童与30至39岁成人相比,调整患病率比(aPR)为0.08,95%置信区间为0.06至0.12),而男性接受检测的频率高于女性(a女性(aPR为1.51,95%置信区间为1.40至1.63)。在预测模型中,受试者工作特征曲线下面积为0.92(95%置信区间为0.90至0.93)。我们估计,每次检测呈阳性对应的SARS-CoV-2感染总数为8至17例(8 - 17:1)。1至4岁年龄组(211 - 480:1)、5至9岁年龄组(80 - 185:1)和女性(13 - 25:1)的估计病例数与确诊病例数之比更高。

结论

从2020年3月到2021年8月,吉尔吉特-巴尔蒂斯坦的大多数SARS-CoV-2感染未得到确诊,尤其是在妇女和儿童中。纳入自我报告症状的预测模型可能有助于更好地了解缺乏诊断能力地区的疾病负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a48c/12039044/1245ed82f08f/bmjph-3-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验