补充丝氨酸可抑制缺氧诱导的病理性视网膜血管生成。
Serine supplementation suppresses hypoxia-induced pathological retinal angiogenesis.
作者信息
Yagi Hitomi, Qiu Chenxi, Zeng Yan, Boeck Myriam, Nian Shen, Chen Chuck T, Harman Jarrod C, Kasai Taku, Lee Jeff, Hirst Victoria, Neilsen Katherine, Wang Chaomei, Bora Kiran, Maurya Meenakshi, Rodrick Tori, Grumbine Matthew, Yang Yuelin, Hua Zhanqing, Sweet Ian R, Singh Sasha A, Aikawa Masanori, Chen Jing, Fu Zhongjie
机构信息
Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan.
出版信息
Theranostics. 2025 Apr 9;15(11):5087-5105. doi: 10.7150/thno.105299. eCollection 2025.
: Pathological retinal angiogenesis with irregular and fragile vessels (also termed neovascularization, a response to hypoxia and dysmetabolism) is a leading cause of vision loss in all age groups. This process is driven in part through the energy deficiency in retinal neurons. Sustaining neural retinal metabolism with adequate nutrient supply may help prevent vision-threatening neovascularization. Low circulating serine levels are associated with neovascularization in macular telangiectasia and altered serine/glycine metabolism has been suggested in retinopathy of prematurity. We here explored the role of serine metabolism in suppressing hypoxia-driven retinal neovascularization using oxygen-induced retinopathy (OIR) mouse model. : We administered wild-type C57BL/6J OIR pups with systemic serine or provided the nursing dam with a serine/glycine-deficient diet during the relative hypoxic phase, followed by analysis of retinal vasculature at postnatal (P) 17, the time of peak neovascularization. Retinas from P17 OIR pups with either systemic serine supplementation or vehicle control were subjected to metabolomics, lipidomics, proteomics, and single-cell RNA sequencing. To validate the role of mitochondrial fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) in mediating serine protection against OIR, we treated OIR pups with inhibitors to block FAO or OXPHOS along with either serine or vehicle. The potential transcriptional mediator and pro-angiogenic signals were validated by western blotting. : Systemic serine supplementation reduced retinal neovascularization, while maternal dietary serine/glycine deficiency exacerbated it. FAO was essential in mediating serine protective effects, and serine supplementation increased levels of phosphatidylcholine, the most abundant phospholipids in the retina. Serine treatment a) increased the abundance of proteins involved in OXPHOS in retinas, b) increased the expression of mitochondrial respiration-related genes, and c) decreased the expression of pro-angiogenic genes in rod photoreceptor cluster. Serine suppression of retinal neovascularization was dependent on mitochondrial energy production. High mobility group box 1 protein (HMGB1) was identified as a potential key mediator of serine suppression of pro-angiogenic signals in hypoxic retinas. : Our findings suggest that serine supplementation may serve as a potential therapeutic approach for neovascular eye diseases by enhancing retinal mitochondrial metabolism and lipid utilization, suppressing the key drivers of uncontrolled angiogenesis.
病理性视网膜血管生成伴有不规则且脆弱的血管(也称为新生血管形成,是对缺氧和代谢紊乱的一种反应)是所有年龄组视力丧失的主要原因。这一过程部分是由视网膜神经元的能量缺乏驱动的。通过充足的营养供应维持神经视网膜代谢可能有助于预防威胁视力的新生血管形成。循环丝氨酸水平低与黄斑毛细血管扩张症中的新生血管形成有关,并且在早产儿视网膜病变中已提示丝氨酸/甘氨酸代谢改变。我们在此使用氧诱导性视网膜病变(OIR)小鼠模型探讨了丝氨酸代谢在抑制缺氧驱动的视网膜新生血管形成中的作用。
我们在相对缺氧阶段给野生型C57BL/6J OIR幼崽全身性给予丝氨酸,或者给哺乳期母鼠提供丝氨酸/甘氨酸缺乏的饮食,然后在出生后(P)17天(新生血管形成的高峰期)分析视网膜血管系统。对全身性补充丝氨酸或给予载体对照的P17 OIR幼崽的视网膜进行代谢组学、脂质组学、蛋白质组学和单细胞RNA测序。为了验证线粒体脂肪酸氧化(FAO)和氧化磷酸化(OXPHOS)在介导丝氨酸对OIR的保护作用中的作用,我们用抑制剂处理OIR幼崽以阻断FAO或OXPHOS,并同时给予丝氨酸或载体。通过蛋白质印迹法验证潜在的转录调节因子和促血管生成信号。
全身性补充丝氨酸减少了视网膜新生血管形成,而母体饮食中丝氨酸/甘氨酸缺乏则使其加剧。FAO在介导丝氨酸的保护作用中至关重要,并且补充丝氨酸增加了视网膜中最丰富的磷脂磷脂酰胆碱的水平。丝氨酸处理a)增加了视网膜中参与OXPHOS的蛋白质丰度,b)增加了线粒体呼吸相关基因的表达,并且c)降低了视杆光感受器簇中促血管生成基因的表达。丝氨酸对视网膜新生血管形成的抑制作用依赖于线粒体能量产生。高迁移率族蛋白B1(HMGB1)被确定为丝氨酸抑制缺氧视网膜中促血管生成信号的潜在关键调节因子。
我们的研究结果表明,补充丝氨酸可能通过增强视网膜线粒体代谢和脂质利用,抑制不受控制的血管生成的关键驱动因素,从而作为新生血管性眼病的一种潜在治疗方法。