文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

酰基辅酶 A:胆固醇转移酶 1(ACAT1)在视网膜新生血管中的作用。

Role of acyl-coenzyme A: cholesterol transferase 1 (ACAT1) in retinal neovascularization.

机构信息

Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA.

Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.

出版信息

J Neuroinflammation. 2023 Jan 23;20(1):14. doi: 10.1186/s12974-023-02700-5.


DOI:10.1186/s12974-023-02700-5
PMID:36691048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9869542/
Abstract

BACKGROUND: We have investigated the efficacy of a new strategy to limit pathological retinal neovascularization (RNV) during ischemic retinopathy by targeting the cholesterol metabolizing enzyme acyl-coenzyme A: cholesterol transferase 1 (ACAT1). Dyslipidemia and cholesterol accumulation have been strongly implicated in promoting subretinal NV. However, little is known about the role of cholesterol metabolism in RNV. Here, we tested the effects of inhibiting ACAT1 on pathological RNV in the mouse model of oxygen-induced retinopathy (OIR). METHODS: In vivo studies used knockout mice that lack the receptor for LDL cholesterol (LDLR) and wild-type mice. The wild-type mice were treated with a specific inhibitor of ACAT1, K604 (10 mg/kg, i.p) or vehicle (PBS) during OIR. In vitro studies used human microglia exposed to oxygen-glucose deprivation (OGD) and treated with the ACAT1 inhibitor (1 μM) or PBS. RESULTS: Analysis of OIR retinas showed that increased expression of inflammatory mediators and pathological RNV were associated with significant increases in expression of the LDLR, increased accumulation of neutral lipids, and formation of toxic levels of cholesterol ester (CE). Deletion of the LDLR completely blocked OIR-induced RNV and significantly reduced the AVA. The OIR-induced increase in CE formation was accompanied by significant increases in expression of ACAT1, VEGF and inflammatory factors (TREM1 and MCSF) (p < 0.05). ACAT1 was co-localized with TREM1, MCSF, and macrophage/microglia makers (F4/80 and Iba1) in areas of RNV. Treatment with K604 prevented retinal accumulation of neutral lipids and CE formation, inhibited RNV, and decreased the AVA as compared to controls (p < 0.05). The treatment also blocked upregulation of LDLR, ACAT1, TREM1, MCSF, and inflammatory cytokines but did not alter VEGF expression. K604 treatment of microglia cells also blocked the effects of OGD in increasing expression of ACAT1, TREM1, and MCSF without altering VEGF expression. CONCLUSIONS: OIR-induced RNV is closely associated with increases in lipid accumulation and CE formation along with increased expression of LDLR, ACAT1, TREM1, and MCSF. Inhibiting ACAT1 blocked these effects and limited RNV independently of alterations in VEGF expression. This pathway offers a novel strategy to limit vascular injury during ischemic retinopathy.

摘要

背景:我们研究了通过靶向胆固醇代谢酶酰基辅酶 A:胆固醇转移酶 1(ACAT1)来限制缺血性视网膜病变中病理性视网膜新生血管(RNV)的新策略的疗效。血脂异常和胆固醇积累强烈提示促进了视网膜下 NV。然而,关于胆固醇代谢在 RNV 中的作用知之甚少。在这里,我们测试了抑制 ACAT1 在氧诱导的视网膜病变(OIR)小鼠模型中病理性 RNV 的效果。 方法:体内研究使用缺乏 LDL 胆固醇受体(LDLR)的敲除小鼠和野生型小鼠。在 OIR 期间,用 ACAT1 的特异性抑制剂 K604(10mg/kg,腹腔内)或载体(PBS)处理野生型小鼠。体外研究使用暴露于氧葡萄糖剥夺(OGD)的人小神经胶质细胞,并使用 ACAT1 抑制剂(1μM)或 PBS 处理。 结果:OIR 视网膜分析表明,炎症介质表达增加和病理性 RNV 与 LDLR 表达显著增加、中性脂质积累增加以及有毒水平胆固醇酯(CE)形成有关。LDLR 的缺失完全阻断了 OIR 诱导的 RNV,并显著降低了 AVA。CE 形成的 OIR 诱导增加伴随着 ACAT1、VEGF 和炎症因子(TREM1 和 MCSF)表达的显著增加(p<0.05)。ACAT1 与 TREM1、MCSF 和巨噬细胞/小胶质细胞标志物(F4/80 和 Iba1)在 RNV 区域共定位。与对照组相比,K604 治疗可防止视网膜中性脂质和 CE 形成的积累,抑制 RNV,并降低 AVA(p<0.05)。该治疗还阻断了 LDLR、ACAT1、TREM1、MCSF 和炎症细胞因子的上调,但不改变 VEGF 的表达。K604 处理小胶质细胞也阻止了 OGD 增加 ACAT1、TREM1 和 MCSF 表达的作用,而不改变 VEGF 的表达。 结论:OIR 诱导的 RNV 与脂质积累和 CE 形成的增加密切相关,同时 LDLR、ACAT1、TREM1 和 MCSF 的表达增加。抑制 ACAT1 阻断了这些作用,并独立于 VEGF 表达的改变限制了 RNV。该途径为限制缺血性视网膜病变中的血管损伤提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2764a44fc946/12974_2023_2700_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/3f50bbe2f75b/12974_2023_2700_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2ff23a0d6081/12974_2023_2700_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/33a69f4f1ff5/12974_2023_2700_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/64d1262e548a/12974_2023_2700_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/cebb34d8e638/12974_2023_2700_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/57ca247f4353/12974_2023_2700_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/bdfc7bd74af6/12974_2023_2700_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/087f4c857d6f/12974_2023_2700_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2f5a2f46729c/12974_2023_2700_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2764a44fc946/12974_2023_2700_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/3f50bbe2f75b/12974_2023_2700_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2ff23a0d6081/12974_2023_2700_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/33a69f4f1ff5/12974_2023_2700_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/64d1262e548a/12974_2023_2700_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/cebb34d8e638/12974_2023_2700_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/57ca247f4353/12974_2023_2700_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/bdfc7bd74af6/12974_2023_2700_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/087f4c857d6f/12974_2023_2700_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2f5a2f46729c/12974_2023_2700_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef7/9869542/2764a44fc946/12974_2023_2700_Fig10_HTML.jpg

相似文献

[1]
Role of acyl-coenzyme A: cholesterol transferase 1 (ACAT1) in retinal neovascularization.

J Neuroinflammation. 2023-1-23

[2]
Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair.

Cell Death Dis. 2022-8-29

[3]
Serine supplementation suppresses hypoxia-induced pathological retinal angiogenesis.

Theranostics. 2025-4-9

[4]
Myeloid ACAT1/SOAT1: a novel regulator of dyslipidemia and retinal neovascularization.

NPJ Metab Health Dis. 2025-1-13

[5]
Inhibition of Endothelial HIF-1α by IDF-11774 Attenuates Retinal Neovascularization and Vascular Leakage.

Invest Ophthalmol Vis Sci. 2025-7-1

[6]
Inhibitory effects of ursolic acid on oxygen-induced mouse retinal neovascularization via intravitreal injection.

Mol Vis. 2025-4-10

[7]
Ref-1 redox activity regulates retinal neovascularization by modulating transcriptional activation of HIF-1α.

FASEB J. 2025-2-15

[8]
Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity.

Cochrane Database Syst Rev. 2018-1-8

[9]
Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization.

Am J Pathol. 2024-12

[10]
Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion.

Cochrane Database Syst Rev. 2013-1-31

引用本文的文献

[1]
Myeloid ACAT1/SOAT1: a novel regulator of dyslipidemia and retinal neovascularization.

NPJ Metab Health Dis. 2025-1-13

[2]
Loss of neurofibromin induces inflammatory macrophage phenotypic switch and retinal neovascularization via GLUT1 activation.

Cell Rep. 2025-5-27

[3]
Aberrant lipid accumulation and retinal pigment epithelium dysfunction in PRCD-deficient mice.

Exp Eye Res. 2024-9

[4]
Epithelial Membrane Protein 2 (EMP2) Blockade Attenuates Pathological Neovascularization in Murine Oxygen-Induced Retinopathy.

Invest Ophthalmol Vis Sci. 2024-7-1

[5]
Beyond the Cardiovascular Effects of Glucagon-like Peptide-1 Receptor Agonists: Body Slimming and Plaque Stabilization. Are New Statins Born?

Biomolecules. 2023-11-23

[6]
Calbindin 2-specific deletion of arginase 2 preserves visual function after optic nerve crush.

Cell Death Dis. 2023-10-10

本文引用的文献

[1]
Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair.

Cell Death Dis. 2022-8-29

[2]
Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice.

Front Cardiovasc Med. 2022-6-2

[3]
Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury.

Exp Neurol. 2022-2

[4]
Macrophage-Like Cell Density Is Increased in Proliferative Diabetic Retinopathy Characterized by Optical Coherence Tomography Angiography.

Invest Ophthalmol Vis Sci. 2021-8-2

[5]
Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates.

Expert Opin Ther Pat. 2021-6

[6]
Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche.

Sci Transl Med. 2020-8-5

[7]
Intravitreal Injection of Anti-VEGF Antibody Induces Glomerular Endothelial Cells Injury.

Case Rep Nephrol. 2019-12-21

[8]
Lipoprotein receptor signalling in atherosclerosis.

Cardiovasc Res. 2020-6-1

[9]
Brain Targeting of Acyl-CoA:Cholesterol -Acyltransferase-1 Inhibitor K-604 via the Intranasal Route Using a Hydroxycarboxylic Acid Solution.

ACS Omega. 2019-10-2

[10]
Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibition in Cancer Treatment.

Anticancer Res. 2019-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索