Suppr超能文献

巴西上空MODIS气溶胶光学厚度反演算法的评估与比较

EVALUATION AND COMPARISON OF MODIS AEROSOL OPTICAL DEPTH RETRIEVAL ALGORITHMS OVER BRAZIL.

作者信息

Rudke Anderson Paulo, Martins Jorge Alberto, Martins Leila Droprinchinski, Vieira Carolina Letícia Zilli, Li Longxiang, da Silva Carlos Fabricio Assunção, Dos Santos Alex Mota, Koutrakis Petros, de Almeida Albuquerque Taciana Toledo

机构信息

Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Pres. Antônio Carlos Ave, 31270-901, Belo Horizonte - MG, Brazil.

Federal University of Technology - Paraná, 3131 Dos Pioneiros Ave, 86036-370, Londrina - PR, Brazil.

出版信息

Atmos Environ (1994). 2023 Dec 1;314. doi: 10.1016/j.atmosenv.2023.120130. Epub 2023 Oct 5.

Abstract

Brazil experiences significant aerosol loads throughout the year, particularly during the biomass-burning season in the Amazon. Thus, given the importance of aerosols for climate and health, this research aimed to validate and compare Aerosol Optical Depth (AOD) products over Brazil. This evaluation considers three algorithms that retrieve AOD by using data from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor: Dark Target (DT) at 3 and 10 km resolution, Deep Blue (DB), and Multi-Angle Implementation of Atmospheric Correction (MAIAC). To validate the satellite data, 17 sunphotometers from the AErosol RObotic NETwork (AERONET) were utilized. The results show a high correlation (R>0.9) between the MODIS-AOD products and ground-based data. However, MODIS-AOD products tend to overestimate or underestimate AOD values, depending on the specific AOD value and algorithm evaluated. Additionally, it was observed that the performance of the algorithms is influenced by factors such as land cover type, view geometry, and the spatiotemporal distribution of aerosols. In particular, challenges were encountered when retrieving robust AOD data for Savanna and Urban cover classes. In conclusion, the results indicate that MAIAC and DB algorithms demonstrate greater stability in retrieving AOD values. Nevertheless, caution should be exercised when applying these products to map aerosols on specific surfaces, such as urban areas.

摘要

巴西全年气溶胶负荷量都很大,尤其是在亚马逊地区的生物质燃烧季节。因此,鉴于气溶胶对气候和健康的重要性,本研究旨在验证和比较巴西上空的气溶胶光学厚度(AOD)产品。该评估考虑了三种利用中分辨率成像光谱仪(MODIS)传感器数据反演AOD的算法:3公里和10公里分辨率的暗目标(DT)算法、深蓝(DB)算法以及大气校正多角度实现(MAIAC)算法。为了验证卫星数据,使用了来自气溶胶机器人网络(AERONET)的17台太阳光度计。结果表明,MODIS - AOD产品与地面数据之间具有高度相关性(R>0.9)。然而,根据所评估的特定AOD值和算法,MODIS - AOD产品往往会高估或低估AOD值。此外,观察到算法的性能受土地覆盖类型、视角几何形状和气溶胶时空分布等因素影响。特别是在获取稀树草原和城市覆盖类别的可靠AOD数据时遇到了挑战。总之,结果表明MAIAC和DB算法在反演AOD值方面表现出更大的稳定性。然而,在将这些产品应用于绘制特定表面(如城市地区)的气溶胶图时应谨慎。

相似文献

1
EVALUATION AND COMPARISON OF MODIS AEROSOL OPTICAL DEPTH RETRIEVAL ALGORITHMS OVER BRAZIL.
Atmos Environ (1994). 2023 Dec 1;314. doi: 10.1016/j.atmosenv.2023.120130. Epub 2023 Oct 5.
2
A high-precision aerosol retrieval algorithm for FY-3D MERSI-II images.
Environ Int. 2023 Mar;173:107841. doi: 10.1016/j.envint.2023.107841. Epub 2023 Feb 21.
4
Satellite-based aerosol optical depth estimates over the continental U.S. during the 2020 wildfire season: Roles of smoke and land cover.
Sci Total Environ. 2024 Apr 15;921:171122. doi: 10.1016/j.scitotenv.2024.171122. Epub 2024 Feb 22.
7
Validation, analysis, and comparison of MISR V23 aerosol optical depth products with MODIS and AERONET observations.
Sci Total Environ. 2023 Jan 15;856(Pt 1):159117. doi: 10.1016/j.scitotenv.2022.159117. Epub 2022 Sep 29.
8
Evaluation and analysis of long-term MODIS MAIAC aerosol products in China.
Sci Total Environ. 2024 Oct 20;948:174983. doi: 10.1016/j.scitotenv.2024.174983. Epub 2024 Jul 22.

本文引用的文献

3
Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems.
Glob Chang Biol. 2022 Nov;28(22):6807-6822. doi: 10.1111/gcb.16386. Epub 2022 Sep 8.
4
Deforestation drivers in the Brazilian Amazon: assessing new spatial predictors.
J Environ Manage. 2021 Sep 15;294:113020. doi: 10.1016/j.jenvman.2021.113020. Epub 2021 Jun 11.
5
Estimation of ambient PM in Iraq and Kuwait from 2001 to 2018 using machine learning and remote sensing.
Environ Int. 2021 Jun;151:106445. doi: 10.1016/j.envint.2021.106445. Epub 2021 Feb 19.
6
Ground PM prediction using imputed MAIAC AOD with uncertainty quantification.
Environ Pollut. 2021 Apr 1;274:116574. doi: 10.1016/j.envpol.2021.116574. Epub 2021 Jan 22.
8
Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events.
J Environ Manage. 2019 Dec 15;252:109645. doi: 10.1016/j.jenvman.2019.109645. Epub 2019 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验