Rudke Anderson Paulo, Martins Jorge Alberto, Martins Leila Droprinchinski, Vieira Carolina Letícia Zilli, Li Longxiang, da Silva Carlos Fabricio Assunção, Dos Santos Alex Mota, Koutrakis Petros, de Almeida Albuquerque Taciana Toledo
Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Pres. Antônio Carlos Ave, 31270-901, Belo Horizonte - MG, Brazil.
Federal University of Technology - Paraná, 3131 Dos Pioneiros Ave, 86036-370, Londrina - PR, Brazil.
Atmos Environ (1994). 2023 Dec 1;314. doi: 10.1016/j.atmosenv.2023.120130. Epub 2023 Oct 5.
Brazil experiences significant aerosol loads throughout the year, particularly during the biomass-burning season in the Amazon. Thus, given the importance of aerosols for climate and health, this research aimed to validate and compare Aerosol Optical Depth (AOD) products over Brazil. This evaluation considers three algorithms that retrieve AOD by using data from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor: Dark Target (DT) at 3 and 10 km resolution, Deep Blue (DB), and Multi-Angle Implementation of Atmospheric Correction (MAIAC). To validate the satellite data, 17 sunphotometers from the AErosol RObotic NETwork (AERONET) were utilized. The results show a high correlation (R>0.9) between the MODIS-AOD products and ground-based data. However, MODIS-AOD products tend to overestimate or underestimate AOD values, depending on the specific AOD value and algorithm evaluated. Additionally, it was observed that the performance of the algorithms is influenced by factors such as land cover type, view geometry, and the spatiotemporal distribution of aerosols. In particular, challenges were encountered when retrieving robust AOD data for Savanna and Urban cover classes. In conclusion, the results indicate that MAIAC and DB algorithms demonstrate greater stability in retrieving AOD values. Nevertheless, caution should be exercised when applying these products to map aerosols on specific surfaces, such as urban areas.
巴西全年气溶胶负荷量都很大,尤其是在亚马逊地区的生物质燃烧季节。因此,鉴于气溶胶对气候和健康的重要性,本研究旨在验证和比较巴西上空的气溶胶光学厚度(AOD)产品。该评估考虑了三种利用中分辨率成像光谱仪(MODIS)传感器数据反演AOD的算法:3公里和10公里分辨率的暗目标(DT)算法、深蓝(DB)算法以及大气校正多角度实现(MAIAC)算法。为了验证卫星数据,使用了来自气溶胶机器人网络(AERONET)的17台太阳光度计。结果表明,MODIS - AOD产品与地面数据之间具有高度相关性(R>0.9)。然而,根据所评估的特定AOD值和算法,MODIS - AOD产品往往会高估或低估AOD值。此外,观察到算法的性能受土地覆盖类型、视角几何形状和气溶胶时空分布等因素影响。特别是在获取稀树草原和城市覆盖类别的可靠AOD数据时遇到了挑战。总之,结果表明MAIAC和DB算法在反演AOD值方面表现出更大的稳定性。然而,在将这些产品应用于绘制特定表面(如城市地区)的气溶胶图时应谨慎。