Suppr超能文献

一种利用高分辨率气溶胶光学厚度数据估算美国东北部多年每日PM浓度的新型混合时空模型。

A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data.

作者信息

Kloog Itai, Chudnovsky Alexandra A, Just Allan C, Nordio Francesco, Koutrakis Petros, Coull Brent A, Lyapustin Alexei, Wang Yujie, Schwartz Joel

机构信息

Department of Geography and Environmental Development, Ben-Gurion University, Israel.

Department of Geography and Human Environment, Tel-Aviv University, Israel.

出版信息

Atmos Environ (1994). 2014 Oct;95:581-590. doi: 10.1016/j.atmosenv.2014.07.014. Epub 2014 Jul 5.

Abstract

BACKGROUND

The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data.

METHODS

We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site.

RESULTS

Our model performance was excellent (mean out-of-sample R=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R=0.87, R=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99).

CONCLUSION

Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.

摘要

背景

在过去几年中,利用基于卫星的气溶胶光学厚度(AOD)来估计用于流行病学研究的细颗粒物(PM)的情况大幅增加。这些近期研究常常报告预测能力一般,这可能在效应估计中产生向下偏差。此外,AOD测量的空间分辨率仅为中等,且存在大量缺失数据。

方法

我们利用了中分辨率成像光谱仪(MODIS)卫星数据处理算法(大气校正多角度实现(MAIAC))的最新进展,这使我们能够使用1千米(而非目前可用的10千米)分辨率的AOD数据。我们开发并交叉验证了模型,以预测2003年至2011年美国东北部(新英格兰、纽约和新泽西)1×1千米分辨率下的每日PM,从而使我们能够更好地区分城市、郊区和农村地区的每日和长期暴露情况。此外,我们开发了一种方法,使我们能够生成每日高分辨率的200米局部预测,以表示与1×1千米区域网格预测的偏差。我们使用混合模型,将PM测量值与特定日期的随机截距以及固定和随机的AOD及温度斜率进行回归。然后,当AOD缺失时,我们使用具有空间平滑功能的广义相加混合模型来生成网格单元预测。最后,为了获得200米局部预测,我们将每个监测器最终模型的残差与每个监测站点的局部空间和时间变量进行回归。

结果

我们的模型性能出色(样本外平均R = 0.88)。样本外结果的空间和时间成分对保留数据的拟合也非常好(R = 0.87,R = 0.87)。此外,我们的结果显示预测浓度几乎没有偏差(预测值与保留观测值的斜率 = 0.99)。

结论

我们的每日模型结果在高空间分辨率下显示出高预测准确性,将有助于重建该地区流行病学研究的暴露史。

相似文献

4
Modelling daily PM concentrations at high spatio-temporal resolution across Switzerland.
Environ Pollut. 2018 Feb;233:1147-1154. doi: 10.1016/j.envpol.2017.10.025. Epub 2017 Oct 14.
5
Estimating daily PM and PM across the complex geo-climate region of Israel using MAIAC satellite-based AOD data.
Atmos Environ (1994). 2015 Dec;122:409-416. doi: 10.1016/j.atmosenv.2015.10.004. Epub 2015 Oct 8.
6
A gap-filling hybrid approach for hourly PM prediction at high spatial resolution from multi-sourced AOD data.
Environ Pollut. 2022 Dec 15;315:120419. doi: 10.1016/j.envpol.2022.120419. Epub 2022 Oct 19.
7
[High-resolution Estimation of Spatio-temporal Variation in PM Concentrations in the Beijing-Tianjin-Hebei Region].
Huan Jing Ke Xue. 2021 Sep 8;42(9):4083-4094. doi: 10.13227/j.hjkx.202012197.
8
Predicting daily PM concentrations in Texas using high-resolution satellite aerosol optical depth.
Sci Total Environ. 2018 Aug 1;631-632:904-911. doi: 10.1016/j.scitotenv.2018.02.255. Epub 2018 Mar 16.

引用本文的文献

1
EVALUATION AND COMPARISON OF MODIS AEROSOL OPTICAL DEPTH RETRIEVAL ALGORITHMS OVER BRAZIL.
Atmos Environ (1994). 2023 Dec 1;314. doi: 10.1016/j.atmosenv.2023.120130. Epub 2023 Oct 5.
2
A review of geospatial exposure models and approaches for health data integration.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):131-148. doi: 10.1038/s41370-024-00712-8. Epub 2024 Sep 6.
3
Advancing environmental epidemiologic methods to confront the cancer burden.
Am J Epidemiol. 2025 Jan 8;194(1):195-207. doi: 10.1093/aje/kwae175.
4
Relative humidity, temperature, and hypertensive disorders of pregnancy: Findings from the Project Viva cohort.
Environ Res. 2024 Sep 15;257:119211. doi: 10.1016/j.envres.2024.119211. Epub 2024 May 22.
5
PM and PM during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates.
Environ Chall (Amst). 2021 Dec;5:100215. doi: 10.1016/j.envc.2021.100215. Epub 2021 Jul 16.
6
Health and Economic Benefits of Air Pollution Reductions in Vietnam During 2020-2021.
Int J Public Health. 2023 Oct 10;68:1606238. doi: 10.3389/ijph.2023.1606238. eCollection 2023.
10
Optimized environmental justice calculations for air pollution disparities in Southern California.
Heliyon. 2022 Sep 26;8(10):e10732. doi: 10.1016/j.heliyon.2022.e10732. eCollection 2022 Oct.

本文引用的文献

2
Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling.
J Expo Sci Environ Epidemiol. 2014 Jul;24(4):398-404. doi: 10.1038/jes.2013.90. Epub 2013 Dec 25.
3
Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China.
Int J Environ Res Public Health. 2013 Dec 20;11(1):173-86. doi: 10.3390/ijerph110100173.
5
Spatial scales of pollution from variable resolution satellite imaging.
Environ Pollut. 2013 Jan;172:131-8. doi: 10.1016/j.envpol.2012.08.016. Epub 2012 Sep 29.
8
Acute and chronic effects of particles on hospital admissions in New-England.
PLoS One. 2012;7(4):e34664. doi: 10.1371/journal.pone.0034664. Epub 2012 Apr 17.
9
Outdoor air pollution and respiratory health in patients with COPD.
Thorax. 2011 Jul;66(7):591-6. doi: 10.1136/thx.2010.155358. Epub 2011 Apr 1.
10
The effect of fine and coarse particulate air pollution on mortality: a national analysis.
Environ Health Perspect. 2009 Jun;117(6):898-903. doi: 10.1289/ehp.0800108. Epub 2009 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验