Suppr超能文献

标准化用于从复杂犯罪现场污渍中识别体液的微生物组流程。

Standardizing a microbiome pipeline for body fluid identification from complex crime scene stains.

作者信息

Swayambhu Meghna, Gysi Mario, Haas Cordula, Schuh Larissa, Walser Larissa, Javanmard Fardin, Flury Tamara, Ahannach Sarah, Lebeer Sarah, Hanssen Eirik, Snipen Lars, Bokulich Nicholas A, Kümmerli Rolf, Arora Natasha

机构信息

Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

Department of Bioscience Engineering, Laboratory of Applied Microbiology and Biotechnology, University of Antwerp, Antwerp, Belgium.

出版信息

Appl Environ Microbiol. 2025 May 21;91(5):e0187124. doi: 10.1128/aem.01871-24. Epub 2025 Apr 30.

Abstract

Recent advances in next-generation sequencing have opened up new possibilities for applying the human microbiome in various fields, including forensics. Researchers have capitalized on the site-specific microbial communities found in different parts of the body to identify body fluids from biological evidence. Despite promising results, microbiome-based methods have not been integrated into forensic practice due to the lack of standardized protocols and systematic testing of methods on forensically relevant samples. Our study addresses critical decisions in establishing these protocols, focusing on bioinformatics choices and the use of machine learning to present microbiome results in case reports for forensically relevant and challenging samples. In our study, we propose using operational taxonomic units (OTUs) for read data processing and generating heterogeneous training data sets for training a random forest classifier. We incorporated six forensically relevant classes: saliva, semen, skin from hand, penile skin, urine, and vaginal/menstrual fluid, and our classifier achieved a high weighted average F1 score of 0.89. Systematic testing on mock forensic samples, including mixed-source samples and underwear, revealed reliable detection of at least one component of the mixture and the identification of vaginal fluid from underwear substrates. Additionally, when investigating the sexually shared microbiome (sexome) of heterosexual couples, our classifier could potentially infer the nature of sexual activity. We therefore highlight the value of the sexome for assessing the nature of sexual activities in forensic investigations while delineating areas that warrant further research.IMPORTANCEMicrobiome-based analyses combined with machine learning offer potential avenues for use in forensic science and other applied fields, yet standardized protocols remain lacking. Moreover, machine learning classifiers have shown promise for predicting body sites in forensics, but they have not been systematically evaluated on complex mixed-source samples. Our study addresses key decisions for establishing standardized protocols and, to our knowledge, is the first to report classification results from uncontrolled mixed-source samples, including sexome (sexually shared microbiome) samples. In our study, we explore both the strengths and limitations of classifying the mixed-source samples while also providing options for tackling the limitations.

摘要

新一代测序技术的最新进展为人类微生物组在包括法医学在内的各个领域的应用开辟了新的可能性。研究人员利用在身体不同部位发现的特定部位微生物群落,从生物证据中识别体液。尽管取得了令人鼓舞的结果,但由于缺乏标准化方案以及对法医相关样本的方法进行系统测试,基于微生物组的方法尚未纳入法医实践。我们的研究解决了建立这些方案中的关键决策,重点是生物信息学选择以及使用机器学习在法医相关且具有挑战性的样本的案例报告中呈现微生物组结果。在我们的研究中,我们建议使用操作分类单元(OTU)进行读取数据处理,并生成异质训练数据集来训练随机森林分类器。我们纳入了六个法医相关类别:唾液、精液、手部皮肤、阴茎皮肤、尿液以及阴道/月经液,我们的分类器获得了0.89的高加权平均F1分数。对模拟法医样本(包括混合源样本和内衣)的系统测试表明,能够可靠地检测到混合物中的至少一种成分,并从内衣底物中识别出阴道液。此外,在调查异性恋夫妇的性共享微生物组(性组)时,我们的分类器有可能推断性活动的性质。因此,我们强调性组在法医调查中评估性活动性质的价值,同时也划定了需要进一步研究的领域。

重要性

基于微生物组的分析与机器学习相结合为法医学和其他应用领域提供了潜在的应用途径,但仍缺乏标准化方案。此外,机器学习分类器在法医学中预测身体部位方面显示出前景,但尚未在复杂的混合源样本上进行系统评估。我们的研究解决了建立标准化方案的关键决策,据我们所知,这是首次报告来自未控制的混合源样本(包括性组样本)的分类结果。在我们的研究中,我们探讨了对混合源样本进行分类的优势和局限性,同时也提供了应对这些局限性的选项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fcb/12093949/20189fb532c1/aem.01871-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验