Tjo Hansen, Jiang Virginia, Joseph Jerelle A, Conway Jonathan M
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.
Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA.
J Bacteriol. 2025 May 22;207(5):e0040124. doi: 10.1128/jb.00401-24. Epub 2025 Apr 30.
Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. (formerly ) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in governing maltodextrin transport. Utilizing past transcriptomic studies on and species, we identify two maltodextrin transporters in and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.
Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in . This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in , we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.
糖转运进入微生物细胞是木质纤维素生物质转化为代谢产物过程中的一个关键但研究不足的步骤。(以前)是一种极端嗜热的厌氧菌,它能轻易地将木质纤维素生物质的纤维素和半纤维素成分降解为多种寡糖底物。尽管对这种微生物如何降解木质纤维素有了深入了解,但其将释放的寡糖高效转运到细胞内的机制相对较少被探索。在这里,我们鉴定并表征了中负责麦芽糖糊精转运的ATP结合盒(ABC)转运蛋白。利用过去对和物种的转录组学研究,我们在中鉴定出两种麦芽糖糊精转运蛋白,并表达和纯化了它们的底物结合蛋白(Athe_2310和Athe_2574)以进行表征。使用差示扫描量热法和等温滴定量热法,我们表明Athe_2310与较短的麦芽糖糊精,如麦芽糖和海藻糖,有强烈的相互作用,解离常数在微摩尔范围内,而Athe_2574结合较长的麦芽糖糊精,解离常数在亚微摩尔范围内。使用序列 - 结构 - 功能比较方法并结合分子建模,我们为这些底物结合蛋白各自的特异性提供了背景信息。我们提出利用正交ABC转运蛋白摄取不同长度的麦芽寡糖以最大化转运效率。
在这里,我们揭示了中两种麦芽糖糊精ATP结合盒(ABC)转运蛋白进行寡糖转运的生物物理和结构基础。这是该生物体中碳水化合物摄取的首次生物物理表征,并建立了一个工作流程,用于表征中其他寡糖转运蛋白以及对木质纤维素生物加工感兴趣的类似生物质降解嗜热菌中的寡糖转运蛋白。通过破译中高亲和力糖摄取的潜在机制,我们揭示了细胞外木质纤维素降解与细胞内糖转化为代谢产物之间一个未充分探索的步骤。这种理解将扩大利用嗜热菌中的糖转运来重塑木质纤维素生物加工作为可再生生物经济一部分的机会。