Rodionov Dmitry A, Rodionova Irina A, Rodionov Vladimir A, Arzamasov Aleksandr A, Zhang Ke, Rubinstein Gabriel M, Tanwee Tania N N, Bing Ryan G, Crosby James R, Nookaew Intawat, Basen Mirko, Brown Steven D, Wilson Charlotte M, Klingeman Dawn M, Poole Farris L, Zhang Ying, Kelly Robert M, Adams Michael W W
Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA.
A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
Extremely thermophilic bacteria from the genus can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in , strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
属的嗜热细菌能够降解植物细胞壁的多糖成分,并随后利用构成的单糖和寡糖。通过代谢工程,可以生产乙醇和其他具有重要工业价值的终产物。先前的实验研究在模式菌种嗜热解纤维素菌和嗜热栖热放线菌中鉴定出了多种碳水化合物活性酶,而之前的转录组学实验确定了它们假定的碳水化合物摄取转运蛋白。我们使用比较基因组学方法对14种嗜热栖热放线菌进行了研究,以探究碳水化合物利用基因的转录调控机制。碳水化合物利用调控网络的重建包括34种主要局部调控因子的预测结合位点,并指向控制植物生物质降解相关基因表达的调控机制。Rex和CggR调控子控制着中心糖酵解和主要的氧化还原反应。通过在纤维素、纤维二糖、葡萄糖、木聚糖和木糖上生长的嗜热栖热放线菌的转录组学和转录起始位点实验数据,验证了所鉴定的转录因子结合位点和调控子。XylR和XynR调控子控制木聚糖诱导的参与木聚糖降解和木糖利用的基因的转录反应。重建的调控子为碳水化合物利用重建分析提供了信息,并改进了51种转运蛋白和11种分解代谢酶的功能注释。通过基因缺失,我们证实了共享的ATP酶成分MsmK对于在寡糖和多糖上生长至关重要,但对于单糖的利用并非必需。通过阐明嗜热栖热放线菌中的碳水化合物利用框架,可以寻求代谢工程策略来优化从木质纤维素生产生物基燃料和化学品的产量。为了开发非模式微生物的功能代谢工程平台,全面了解其生理和代谢特征至关重要。嗜热栖热放线菌和该属中的其他物种在将未预处理的植物生物质转化为工业燃料和化学品方面具有未开发的潜力。本文阐明了嗜热栖热放线菌用于获取和处理木质纤维素中复杂碳水化合物的高度交互和复杂机制,以补充利用该细菌开发代谢工程平台的相关努力。基于此处的研究结果,提供了关于嗜热栖热放线菌如何天然驱动碳水化合物利用的更清晰图景,并出现了对该细菌进行工程改造以实现木质纤维素向商业产品最佳转化的策略。