Iazzi Melissa, Astori Audrey, St-Germain Jonathan, Sadeghi Sara, Raught Brian, Gupta Gagan D
Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
Methods Mol Biol. 2025;2908:51-64. doi: 10.1007/978-1-0716-4434-8_4.
The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel residing primarily at the apical membrane of epithelial cells, plays a major role in fluid secretion and the maintenance of epithelial surface hydration. Mutations in the CFTR gene lead to the fatal disease known as cystic fibrosis (CF). Drugs that improve mutant CFTR protein folding and channel function have dramatically improved CF patient outcomes. However, the current regimen only restores the function of the most common mutant, ΔF508, to ~62% of wildtype (WT). Notably, ~10% of patients harboring hundreds of less common CFTR mutations are not eligible or do not respond at all to treatment with current CFTR modulators. Better characterizing the WT and mutant CFTR protein interactomes could provide critical insight into how to treat patients with rarer mutations and thereby improve the druggability of this devastating disease. Here we describe how BioID (proximity-dependent biotin identification) can be used to map the CFTR interactome in a human airway model-bronchial epithelial cells grown at the air-liquid interface. Approximately 26% (>5500) of all human protein-coding genes are predicted to code for membrane proteins, which together account for ~30% of the druggable proteome. The methods described here could thus also be applied to improve our understanding of many additional respiratory, autoimmune, and metabolic diseases.
囊性纤维化跨膜传导调节因子(CFTR)是一种主要位于上皮细胞顶端膜的氯离子通道,在液体分泌和上皮表面水合作用的维持中起主要作用。CFTR基因突变会导致致命疾病——囊性纤维化(CF)。改善突变型CFTR蛋白折叠和通道功能的药物显著改善了CF患者的预后。然而,目前的治疗方案仅将最常见的突变体ΔF508的功能恢复到野生型(WT)的约62%。值得注意的是,约10%携带数百种较不常见CFTR突变的患者不符合当前CFTR调节剂治疗的条件或对其完全无反应。更好地描述野生型和突变型CFTR蛋白相互作用组可以为如何治疗罕见突变患者提供关键见解,从而提高这种毁灭性疾病的可药物化性。在这里,我们描述了如何使用BioID(邻近依赖性生物素识别)来绘制人气道模型——在气液界面生长的支气管上皮细胞中的CFTR相互作用组。预计所有人类蛋白质编码基因中约26%(>5500个)编码膜蛋白,它们共同占可药物化蛋白质组的约30%。因此,这里描述的方法也可用于增进我们对许多其他呼吸道、自身免疫和代谢疾病的理解。