Yu Jianjun, Moise Aurel F, Sahany Sandeep, Prasanna Venkatraman, Chua Xin Rong, Chen Chen, Hassim Muhammad E E, Lim Gerald, Luo Fei, Kumar Anupam, Liu Puyang, Raavi Pavan Harika
Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore.
Centre for Climate Research Singapore, Meteorological Service Singapore, National Environment Agency, Singapore.
Sci Total Environ. 2025 Jun 10;980:179501. doi: 10.1016/j.scitotenv.2025.179501. Epub 2025 Apr 29.
Extreme heat and heatwaves driven by global warming pose escalating risks globally, particularly in Southeast Asia (SEA), home to 680 million people, with a high concentration in urban areas. This study made use of CMIP6-based convection-permitting dynamically downscaled simulations at 8 km resolution over SEA under the three Shared Socioeconomic Pathways (SSP) scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Projected changes in daily maximum temperatures and key heat metrics including the frequency of hotter days, heatwaves, and cumulative heat intensity and exposure time were analyzed across the region, as well as for individual countries and cities, for the near future (2040-2059) and far future (2080-2099) relative to the historical baseline (1995-2014). Results indicate a substantial rise in daily maximum temperatures over SEA, with average increases of 1.0-2.1 °C by 2040-2059 and 1.1-4.0 °C by 2080-2099 across the three scenarios. The Mekong Delta, eastern Sumatra and southern Borneo are identified as hotspots with pronounced temperature increase. More frequent and prolonged heatwaves are also projected over SEA, with heatwave frequency and duration doubling around 2025 and 2040, respectively, across the three scenarios, and increasing fivefold around 2045 and 2070, respectively, under SSP5-8.5. Specifically, the Maritime Continent is projected to face a notably higher frequency of hotter days, establishing a new heat norm by the end of the century. Under SSP2-4.5 and SSP5-8.5, approximately 4 and 9 months/year, respectively, will be as hot as or hotter than the historical 5 % hottest days. Cities along the Strait of Malacca and on Java are expected to experience extreme heat with heightened cumulative intensity and longer durations. Mitigating emissions along a low-carbon pathway would provide substantial benefits for the Maritime Continent in the second half of the century, not only for human health but also for agriculture and ecosystems. This study provides the highest resolution and most updated projections of extreme heat over SEA to help inform targeted climate adaption strategies in this highly vulnerable region.
全球变暖引发的极端高温和热浪在全球范围内带来的风险不断升级,特别是在拥有6.8亿人口且城市人口高度集中的东南亚地区。本研究利用基于耦合模式比较计划第6阶段(CMIP6)、在8公里分辨率下对东南亚地区进行的允许对流的动态降尺度模拟,该模拟基于三种共享社会经济路径(SSP)情景:SSP1-2.6、SSP2-4.5和SSP5-8.5。分析了相对于历史基线(1995-2014年)的近期(2040-2059年)和远期(2080-2099年)整个区域以及各个国家和城市的日最高气温预计变化以及关键热指标,包括更热天数的频率、热浪、累积热强度和暴露时间。结果表明,东南亚地区的日最高气温将大幅上升,在三种情景下,到2040-2059年平均升高1.0-2.1摄氏度,到2080-2099年平均升高1.1-4.0摄氏度。湄公河三角洲、苏门答腊岛东部和婆罗洲南部被确定为气温显著升高的热点地区。预计东南亚地区的热浪也将更加频繁和持久,在三种情景下,热浪频率和持续时间将分别在2025年和2040年左右翻倍,在SSP5-8.5情景下,分别在2045年和2070年左右增加五倍。具体而言,预计海洋大陆将面临更热天数的显著更高频率,到本世纪末将形成新的热常态。在SSP2-4.5和SSP5-8.5情景下,每年分别约有4个月和9个月的气温将与历史上最热的5%天数一样热或更热。预计马六甲海峡沿岸和爪哇岛上的城市将经历极端高温,累积强度更高且持续时间更长。沿着低碳路径减排将在本世纪下半叶为海洋大陆带来巨大益处,不仅有利于人类健康,也有利于农业和生态系统。本研究提供了东南亚地区极端高温的最高分辨率和最新预测,以帮助为这个高度脆弱地区制定有针对性的气候适应策略提供信息。