Ji Yanqing, Zhang-Lea Janet, Tran John
Dept of Electrical & Computer Engineering, Gonzaga University, Spokane, USA.
Dept of Human Physiology, University of Oregon, Eugene, USA.
Med Eng Phys. 2025 May;139:104328. doi: 10.1016/j.medengphy.2025.104328. Epub 2025 Mar 24.
This study explores using dual-modal sensory data and machine learning to objectively identify Attention-Deficit/Hyperactivity Disorder (ADHD), a neurodevelopmental disorder traditionally diagnosed through subjective clinical evaluations. Six machine learning algorithms, including Logistic Regression (LR), Random Forest (RF), XGBoost (XGB), LightGBM (LGBM), Neural Network (NN), and Support Vector Machine (SVM), were evaluated using both activity and heart rate variability (HRV) data collected from 103 participants. The results show that both activity and HRV data performed similarly when analyzed individually. However, when the two datasets were combined, the highest F1-score increased by 12 % compared to the activity data and 23 % compared to the HRV data. This combination leverages the complementary strengths of both data, representing a key contribution of our work. With the combined data, the SVM model performed best, achieving an F1-Score of 0.87 and a Matthews Correlation Coefficient of 0.77. This study highlights the significant potential of interdisciplinary collaboration and the use of diverse data sources to advance ADHD detection through cutting-edge machine learning techniques.
本研究探索使用双模态感官数据和机器学习来客观识别注意力缺陷多动障碍(ADHD),这是一种传统上通过主观临床评估进行诊断的神经发育障碍。使用从103名参与者收集的活动数据和心率变异性(HRV)数据,对包括逻辑回归(LR)、随机森林(RF)、XGBoost(XGB)、LightGBM(LGBM)、神经网络(NN)和支持向量机(SVM)在内的六种机器学习算法进行了评估。结果表明,活动数据和HRV数据单独分析时表现相似。然而,当将两个数据集合并时,最高F1分数相比活动数据提高了12%,相比HRV数据提高了23%。这种组合利用了两种数据的互补优势,这是我们工作的一项关键贡献。对于合并后的数据,SVM模型表现最佳,F1分数达到0.87,马修斯相关系数为0.77。本研究强调了跨学科合作以及利用多样化数据源通过前沿机器学习技术推进ADHD检测的巨大潜力。