Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Warandelaan 2, Tilburg, 5037 AB, The Netherlands.
Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Daneshjou Blvd., Tehran, 19839 69411, Iran.
Comput Biol Med. 2024 Dec;183:109240. doi: 10.1016/j.compbiomed.2024.109240. Epub 2024 Oct 23.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by inattention and impulsivity, linked to disruptions in functional brain connectivity and structural alterations in large-scale brain networks. Although sensory pathway anomalies have been implicated in ADHD, the exploration of sensory integration regions remains limited. In this study, we adopted an exploratory approach to investigate the connectivity profile of auditory-visual integration networks (AVIN) in children with ADHD and neurotypical controls using the ADHD-200 rs-fMRI dataset. We expanded our exploration beyond network-based statistics (NBS) by extracting a diverse range of graph theoretical features. These features formed the basis for applying machine learning (ML) techniques to discern distinguishing patterns between the control group and children with ADHD. To address class imbalance and sample heterogeneity, we employed ensemble learning models, including balanced random forest (BRF), XGBoost, and EasyEnsemble classifier (EEC). Our findings revealed significant differences in AVIN between ADHD individuals and neurotypical controls, enabling automated diagnosis with moderate accuracy (74.30%). Notably, the EEC model demonstrated balanced sensitivity and specificity metrics, crucial for diagnostic applications, offering valuable insights for potential clinical use. These results contribute to understanding ADHD's neural underpinnings and highlight the diagnostic potential of AVIN measures. However, the exploratory nature of this study underscores the need for future research to confirm and refine these findings with specific hypotheses and rigorous statistical controls.
注意缺陷多动障碍(ADHD)是一种神经发育障碍,其特征为注意力不集中和冲动,与功能性大脑连接中断和大脑大规模网络结构改变有关。虽然感觉通路异常与 ADHD 有关,但对感觉整合区域的探索仍然有限。在这项研究中,我们采用了探索性方法,使用 ADHD-200 rs-fMRI 数据集,研究 ADHD 儿童和神经典型对照组的听觉-视觉整合网络(AVIN)的连接特征。我们通过提取各种图论特征,超越了基于网络的统计(NBS)进行探索。这些特征为应用机器学习(ML)技术来辨别对照组和 ADHD 儿童之间的区别模式提供了基础。为了解决类别不平衡和样本异质性问题,我们采用了集成学习模型,包括平衡随机森林(BRF)、XGBoost 和 EasyEnsemble 分类器(EEC)。我们的研究结果表明,ADHD 个体与神经典型对照组之间的 AVIN 存在显著差异,可实现中等准确度(74.30%)的自动诊断。值得注意的是,EEC 模型表现出平衡的敏感性和特异性指标,这对于诊断应用至关重要,为潜在的临床应用提供了有价值的见解。这些结果有助于理解 ADHD 的神经基础,并强调了 AVIN 测量在诊断中的潜力。然而,本研究的探索性质突出表明,需要进一步的研究,通过具体的假设和严格的统计控制来确认和完善这些发现。