Suppr超能文献

用于可穿戴电子设备中柔性锌离子电容器的多尺度纤维素增强水凝胶电解质的简便设计

Facile Design of Multiscale Cellulose-Enhanced Hydrogel Electrolytes for Flexible Zn-Ion Capacitors in Wearable Electronics.

作者信息

Wang Hong, Wang Yutao, Pang Yao, Wang Yuxing, Lai Chenhuan, Zhang Daihui, Liu Yupeng

机构信息

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China.

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.

出版信息

Macromol Rapid Commun. 2025 Aug;46(16):e2500295. doi: 10.1002/marc.202500295. Epub 2025 Apr 30.

Abstract

Flexible solid-state supercapacitors show significant potential for wearable electronics; however, achieving simultaneous mechanical robustness and high ionic conductivity remains challenging. In this work, a polyacrylamide (PAM)/cellulose nanocrystal (CNC)-based hydrogel electrolyte loading with carboxymethyl cellulose (CMC) is engineered to address this limitation (PAM/CNC-CMC-Zn). Incorporating CNC improved the mechanical properties of hydrogels, while subsequently adding CMC-Na enriched with hydrophilic groups (─OH and ─COO) into PAM/CNC hydrogels disrupted hydrogen-bond networks within the ZnSO electrolyte, thereby optimizing Zn solvation sheath structure. This modification suppressed corrosion currents and minimized side reactions. The hydrogel demonstrated outstanding mechanical properties, including a tensile strength of 0.22 MPa, high stretchability (1452.1%), and remarkable fracture toughness (0.98 MJ m). The zinc-ion capacitors (Zn // PAM/CNC-CMC-Zn // AC) demonstrate exceptional electrochemical performance, achieving a significant specific capacitance of 151.4 F g⁻¹ at 0.5 A g⁻¹, coupled with a remarkable power density of 1150 W kg⁻¹ (at 10.9 Wh kg⁻¹). Notably, the device exhibits outstanding performance stability, maintaining its functionality under mechanical folding and retaining its efficiency after 10 000 long charge-discharge cycles. These multiscale cellulose-based design highlights the hydrogel electrolyte's dual functionality in balancing mechanical adaptability and electrochemical efficiency, offering a potential solution for next-generation wearable energy storage systems.

摘要

柔性固态超级电容器在可穿戴电子产品中显示出巨大潜力;然而,要同时实现机械鲁棒性和高离子电导率仍然具有挑战性。在这项工作中,设计了一种负载羧甲基纤维素(CMC)的基于聚丙烯酰胺(PAM)/纤维素纳米晶体(CNC)的水凝胶电解质来解决这一限制(PAM/CNC-CMC-Zn)。加入CNC改善了水凝胶的机械性能,随后将富含亲水基团(─OH和─COO)的CMC-Na添加到PAM/CNC水凝胶中,破坏了ZnSO电解质中的氢键网络,从而优化了Zn溶剂化鞘结构。这种改性抑制了腐蚀电流并使副反应最小化。该水凝胶表现出出色的机械性能,包括0.22 MPa的拉伸强度、高拉伸性(1452.1%)和显著的断裂韧性(0.98 MJ m)。锌离子电容器(Zn // PAM/CNC-CMC-Zn // AC)表现出优异的电化学性能,在0.5 A g⁻¹时实现了151.4 F g⁻¹的显著比电容,同时具有1150 W kg⁻¹的显著功率密度(在10.9 Wh kg⁻¹时)。值得注意的是,该器件表现出出色的性能稳定性,在机械折叠下保持其功能,并在10000次长充放电循环后保持其效率。这种基于多尺度纤维素的设计突出了水凝胶电解质在平衡机械适应性和电化学效率方面的双重功能,为下一代可穿戴储能系统提供了一种潜在的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验