Jiang Xiaotong, Koenig Amanda M, Walker Berkley J, Hu Jianping
Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
Nat Commun. 2025 Apr 30;16(1):4057. doi: 10.1038/s41467-025-59349-2.
Photorespiration functions in part to support photosynthetic performance, especially under stress such as high light, yet the underlying mechanisms are poorly understood. To identify modulators of photorespiration under high light, we have isolated genetic suppressors of the photorespiratory mutant hpr1 (hydroxypyruvate reductase 1) from Arabidopsis. A suppressor that partially rescues hpr1 is mapped to GLYR1, which encodes the cytosolic glyoxylate reductase 1 that converts glyoxylate to glycolate. Independent glyr1 mutants also partially rescue hpr1 and another photorespiratory mutant, catalase 2. Our genetic, transcriptomic and metabolic profiling analyses together reveal a connection between cytosolic glyoxylate and a non-canonical photorespiratory route mediated by HPR2, which we name the photorespiratory glyoxylate shunt. This shunt complements the canonical photorespiratory pathway and is especially critical when high photorespiratory fluxes are required and when the major photorespiratory pathway is deficient. Our findings support the metabolic flexibility of photorespiration and may help to improve crop performance under stress.
光呼吸部分功能是支持光合作用性能,尤其是在高光等胁迫条件下,但其潜在机制仍知之甚少。为了鉴定高光条件下光呼吸的调节因子,我们从拟南芥中分离出了光呼吸突变体hpr1(羟基丙酮酸还原酶1)的遗传抑制子。一个能部分挽救hpr1的抑制子被定位到GLYR1,它编码将乙醛酸转化为乙醇酸的胞质乙醛酸还原酶1。独立的glyr1突变体也能部分挽救hpr1和另一个光呼吸突变体过氧化氢酶2。我们的遗传、转录组和代谢谱分析共同揭示了胞质乙醛酸与由HPR2介导的非经典光呼吸途径之间的联系,我们将其命名为光呼吸乙醛酸分流。这种分流补充了经典的光呼吸途径,在需要高光呼吸通量以及主要光呼吸途径不足时尤为关键。我们的研究结果支持了光呼吸的代谢灵活性,并可能有助于提高作物在胁迫条件下的性能。