Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA.
Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
Plant Cell Environ. 2023 Dec;46(12):3704-3720. doi: 10.1111/pce.14711. Epub 2023 Sep 4.
Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemical assays of the C extremophile, Rhazya stricta. These results demonstrate that R. stricta supports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO transfer conductances (stomatal and mesophyll) are re-allocated to increase the water-use efficiency in R. stricta but not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C species to improve photosynthetic efficiency at high temperatures.
提高光呼吸和优化内在水分利用效率是高温下光合作用碳固定的独特挑战。为了确定植物如何适应在高温下促进高光呼吸速率,同时保持水分利用效率,我们对 C 极端微生物 Rhazya stricta 进行了深入的气体交换和生化分析。这些结果表明,R. stricta 在高温下支持更高的光呼吸速率,并且这些更高的光呼吸速率与关键光呼吸酶的活性增加有关;磷酸甘油酸磷酸酶和过氧化氢酶。增加的光呼吸酶活性可能通过减少酶学瓶颈并在高光呼吸速率下允许最小抑制剂积累来增加光呼吸的整体能力。此外,我们发现 CO 传递导度(气孔和叶肉)被重新分配,以提高 R. stricta 的水分利用效率,但不一定是对温度的光合响应。这些结果表明,R. stricta 中存在重要的适应策略,可在高温下保持最佳水分损失下的光合速率。在 R. stricta 中发现的策略可能为其他 C 物种的培育和工程努力提供信息,以提高高温下的光合效率。