Suppr超能文献

通过生物信息学分析鉴定肺腺癌与慢性阻塞性肺疾病共病中焦亡相关的预后基因。

Identifying pyroptosis-related prognostic genes in the co-occurrence of lung adenocarcinoma and COPD via bioinformatics analysis.

作者信息

Cao Chaofan, Zhong Zhaoshuang, Wu Bo, Yang Yang, Kong Lingfei, Xia Shuyue, Xiao Guixian

机构信息

Department of Respiratory Medicine, The Second Affiliated Hospital of Shenyang Medical College, No. 64, Qishan West Road, Shenyang, 110035, Liaoning, China.

Department of Respiratory Medicine, Central Hospital Affiliated to Shenyang Medical College, No. 5, Nanqi West Road, Shenyang, 110024, Liaoning, China.

出版信息

Sci Rep. 2025 Apr 30;15(1):15228. doi: 10.1038/s41598-025-97727-4.

Abstract

Studies have indicated a complex association between chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD). However, the underlying mechanisms of their coexistence are still not fully understood. Thus, this study evaluated the possible mechanisms and biomarkers of COPD and LUAD by analyzing public RNA sequencing databases via bioinformatics analysis. This study obtained the LUAD datasets (TCGA-LUAD, GSE118370, and GSE30219) and the COPD dataset (GSE11784 and GSE39874) from TCGA and GEO databases, respectively. The differentially expressed genes (DEGs) were analyzed using the DESeq2 and limma packages. These DEGs were then intersected with pyroptosis-related genes (PRGs) to produce PRDEGs, which were examined via GO analysis and KEGG enrichment analyses. Simultaneously, a prognostic model was developed using PRDEGs by the TCGA-LUAD dataset to generate diagnostic PRDEGs (DPRDEGs). The STING database was employed to develop a protein-protein interaction (PPI) network for DPRDEGs. Transcription factors-associated with DPRDEGs were also identified in the ChIPBase and hTFtarget databases. The comparative toxicogenomics database (CTD) was employed to detect possible drugs or small molecules that interacted with DPRDEGs, and results were illustrated using Cytoscape. Moreover, this study developed a prognostic model using multivariate analysis and simultaneously conducted a prognostic analysis. The results were further validated by immunohistochemistry (IHC), western blotting (WB), and qPCR of clinical specimens. A total of 273 DEGs were identified, and 12 PRDEGs were detected after intersecting with PRGs. Inflammation and infectious diseases were the primary enriched regions for these PRDEGs, as indicated by GO and KEGG enrichment analyses. The study identified six DPRDEGs (BNIP3, FTO, NEK7, POLR2H, S100A12, and TLR4) via prognosis modeling of PRDEGs. The expression of these DPRDEGs in COPD and LUAD was verified through IHC, WB, and qPCR examinations. Based on multifactorial prognosis modeling, among six, FTO, POLR2H, S100A12, and TLR4 revealed enhanced prognostic predictive effects. This study demonstrated that COPD and LUAD have common pathogenic mechanisms. The identified DPRDEGs and predictive models offer new perspectives for understanding and addressing COPD and LUAD.

摘要

研究表明慢性阻塞性肺疾病(COPD)与肺腺癌(LUAD)之间存在复杂的关联。然而,它们共存的潜在机制仍未完全明确。因此,本研究通过生物信息学分析公共RNA测序数据库,评估了COPD和LUAD可能的机制及生物标志物。本研究分别从TCGA和GEO数据库中获取了LUAD数据集(TCGA-LUAD、GSE118370和GSE30219)以及COPD数据集(GSE11784和GSE39874)。使用DESeq2和limma软件包分析差异表达基因(DEG)。然后将这些DEG与焦亡相关基因(PRG)进行交集分析以产生PRDEG,并通过GO分析和KEGG富集分析对其进行研究。同时,利用TCGA-LUAD数据集的PRDEG建立预后模型以生成诊断性PRDEG(DPRDEG)。使用STING数据库为DPRDEG构建蛋白质-蛋白质相互作用(PPI)网络。还在ChIPBase和hTFtarget数据库中鉴定了与DPRDEG相关的转录因子。利用比较毒理基因组学数据库(CTD)检测与DPRDEG相互作用的可能药物或小分子,并使用Cytoscape展示结果。此外,本研究通过多因素分析建立了预后模型并同时进行了预后分析。结果通过临床标本的免疫组织化学(IHC)、蛋白质免疫印迹(WB)和qPCR进一步验证。共鉴定出273个DEG,与PRG进行交集分析后检测到12个PRDEG。GO和KEGG富集分析表明,炎症和传染病是这些PRDEG的主要富集区域。通过PRDEG的预后建模,本研究鉴定出6个DPRDEG(BNIP3、FTO、NEK7、POLR2H、S100A12和TLR4)。通过IHC、WB和qPCR检测验证了这些DPRDEG在COPD和LUAD中的表达。基于多因素预后建模,其中FTO、POLR2H、S100A12和TLR4显示出增强的预后预测作用。本研究表明COPD和LUAD具有共同的致病机制。所鉴定的DPRDEG和预测模型为理解和应对COPD和LUAD提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c6/12043920/b1361980b53f/41598_2025_97727_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验