Maheshwari Kunal, Sharma Abhilasha, Mansuri Mohammad Kaif A, Prajapati Bhadrawati, Dave Bhavarth, Parekh Priyajeet S, Chorawala Mehul R
Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
J Egypt Natl Canc Inst. 2025 May 5;37(1):15. doi: 10.1186/s43046-025-00273-3.
Lung adenocarcinoma (LUAD) is one of the main forms of carcinomas that contribute towards cancer-related mortality and morbidity. Identification of hub genes through various in silico approaches can lead to the successful prognosis of LUAD and may serve in reducing mortalities rising from it respectively.
This research employs an integrated bioinformatics approach to uncover the molecular intricacies of LUAD. Utilizing the Gene Expression Omnibus (GEO) dataset, we identified GSE19188, GSE18842, GSE31210, and GSE19804 specific datasets from 423 LC tissues and 190 healthy tissues (controls). Differential gene expression analysis using GEO2R and Venn diagrams led to the identification of 851 differentially expressed genes (DEGs), comprising 240 overexpressed and 611 under-expressed genes. To elucidate their roles in LUAD etiology, we conducted protein-protein interaction (PPI) analysis utilizing Cytoscape and Cytohubba software's, revealing densely interconnected gene clusters with potential prognostic significance. Additionally, gene ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were able to shed light on the involvement of these DEGs in processes such as cell cycle modulation and apoptosis, which are crucial in LUAD pathogenesis. Moreover, validation of the hub gene expression and their association with overall survival was performed using the University of Alberta Cancer Research Network (UALCAN) and Human Protein Atlas (HPA) databases, supporting our findings.
The identified DEGs, including cyclin-dependent kinase-1 (CDK1), cyclin B2 (CCNB2), cell division cycle 20 (CDC20), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), cyclin A2 (CCNA2), discs-large associated protein 5 (DLGAP5), abnormal spindle microtubule assembly (ASPM), arrestin beta 1 (ARRB1), and caveolin-1 (CAV1), may serve as potential biomarkers for LUAD pathogenesis and should be explored further.
The present bioinformatics analysis enhances our understanding of molecular mechanisms contributing to LUAD and suggests that the hub genes identified could be promising targets for accurate diagnosis and novel therapeutic strategies in LUAD. Further investigations are necessary to validate and translate these findings into real-world clinical applications, paving the way for more effective treatments and improved outcomes in LUAD patients.
肺腺癌(LUAD)是导致癌症相关死亡率和发病率的主要癌症形式之一。通过各种计算机方法鉴定枢纽基因可实现LUAD的成功预后,并可能有助于分别降低由此导致的死亡率。
本研究采用综合生物信息学方法来揭示LUAD的分子复杂性。利用基因表达综合数据库(GEO)数据集,我们从423个肺癌组织和190个健康组织(对照)中鉴定出GSE19188、GSE18842、GSE31210和GSE19804特定数据集。使用GEO2R和维恩图进行差异基因表达分析,鉴定出851个差异表达基因(DEG),包括240个过表达基因和611个低表达基因。为阐明它们在LUAD病因学中的作用,我们利用Cytoscape和Cytohubba软件进行蛋白质-蛋白质相互作用(PPI)分析,揭示了具有潜在预后意义的紧密相连的基因簇。此外,基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)分析能够阐明这些DEG在细胞周期调控和凋亡等过程中的参与情况,这些过程在LUAD发病机制中至关重要。此外,使用阿尔伯塔大学癌症研究网络(UALCAN)和人类蛋白质图谱(HPA)数据库对枢纽基因表达及其与总生存期的关联进行了验证,支持了我们的发现。
鉴定出的DEG,包括细胞周期蛋白依赖性激酶1(CDK1)、细胞周期蛋白B2(CCNB2)、细胞分裂周期20(CDC20)、BUB1有丝分裂检查点丝氨酸/苏氨酸激酶B(BUB1B)、细胞周期蛋白A2(CCNA2)、盘状大蛋白相关蛋白5(DLGAP5)、异常纺锤体微管组装蛋白(ASPM)、抑制蛋白β1(ARRB1)和小窝蛋白-1(CAV1),可能作为LUAD发病机制的潜在生物标志物,应进一步探索。
目前的生物信息学分析增强了我们对LUAD分子机制的理解,并表明鉴定出的枢纽基因可能是LUAD准确诊断和新治疗策略的有前景的靶点。需要进一步研究来验证这些发现并将其转化为实际临床应用,为LUAD患者更有效的治疗和改善预后铺平道路。