Li Shuzhen, Gao Kun, Yao Desheng
Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
Heliyon. 2024 Jun 19;10(12):e33277. doi: 10.1016/j.heliyon.2024.e33277. eCollection 2024 Jun 30.
Cervical cancer is among the most prevalent malignancies worldwide. This study explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it develops a diagnostic model based on angiogenesis-related differentially expressed genes (ARDEGs).
We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diagnostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy responses in cervical cancer.
A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the model were associated with clinicopathological features, prognosis, and immune cell infiltration. Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell activation) were highly correlated.
This study identifies the prognostic characteristics of ARGs in cervical cancer patients, elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.
宫颈癌是全球最常见的恶性肿瘤之一。本研究探讨血管生成相关基因(ARGs)与免疫浸润之间的关系,并评估它们对宫颈癌预后和治疗的影响。此外,还基于血管生成相关差异表达基因(ARDEGs)开发了一种诊断模型。
我们使用基因本体论(GO)、京都基因与基因组百科全书(KEGG)、基因集富集分析(GSEA)和基因集变异分析(GSVA)系统地评估了15个ARDEGs。使用单样本基因集富集分析(ssGSEA)算法评估免疫细胞浸润。然后,我们使用最小绝对收缩和选择算子(LASSO)回归分析构建了ARDEGs的诊断模型,并评估了该模型和枢纽基因在预测宫颈癌临床结局和免疫治疗反应方面的诊断价值。
从癌症基因组图谱(TCGA)、基因表达综合数据库(GEO)和加州大学圣克鲁兹分校(UCSC)Xena数据库中鉴定出一组ARDEGs。我们对这些基因进行了KEGG、GO和GSEA分析,发现它们在细胞增殖、分化和凋亡中具有重要作用。使用LASSO回归分析构建的ARDEGs诊断模型在宫颈癌患者中显示出较高的预测准确性。我们开发了一个可靠的列线图和决策曲线分析来评估ARDEG诊断模型的临床实用性。模型中的15个ARDEGs与临床病理特征、预后和免疫细胞浸润相关。值得注意的是,整合素α5(ITGA5)表达与免疫细胞浸润丰度(特别是肥大细胞活化)高度相关。
本研究确定了宫颈癌患者ARGs的预后特征,阐明了肿瘤微环境的一些方面。它提高了免疫治疗结果的预测准确性,并建立了免疫治疗干预的新策略。