Suppr超能文献

在MgBiH齐特耳相(Zintl phase)中确定氢的位置。

Locating hydrogen in the MgBiH Zintl phase.

作者信息

Neziraj Teuta, Akselrud Lev, Schmidt Marcus, Burkhardt Ulrich, Grin Yuri, Schwarz Ulrich

机构信息

Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany.

Ivan Franko National University of Lviv, Lviv, Ukraine.

出版信息

Commun Chem. 2025 Apr 30;8(1):132. doi: 10.1038/s42004-025-01530-1.

Abstract

The preparation of Zintl phases with pronounced spin-orbit coupling has received substantial scientific interest because of their distinctive electronic properties. In the context of superconductivity and topological phenomena related to band inversion, intermetallic compounds of bismuth have come into focus recently. While bismuth forms a rich variety of Zintl phases with the heavier alkaline-earth metals, there are significantly fewer magnesium compounds. Here we show that high-temperature high-pressure synthesis opens a convenient route for the preparation of MgBiH already at moderate conditions. The compound (space group Pnma, a = 11.5399(3) Å, b = 8.9503(2) Å and c = 7.8770(2) Å) adopts a CaSbF crystal structure. The minute amounts of hydrogen could only be detected by thermal decomposition of the compound in combination with mass spectroscopy of the gas phase. Direct space analysis of the chemical bonding allowed for allocating the hydrogen position at a partially occupied interstitial site and reveals strongly polar Mg-Bi and Mg-H bonds in accordance with the Zintl concept. Calculated band structures exhibit substantial electronic reorganization upon hydrogen insertion. The combination of advanced analytical tools in concert with modern quantum chemical techniques provides an efficient approach to allocate trace amounts of interstitial atoms stabilizing intermetallic phases.

摘要

由于其独特的电子性质,具有显著自旋轨道耦合的津特耳相的制备引起了广泛的科学关注。在与能带反转相关的超导性和拓扑现象的背景下,铋的金属间化合物最近成为研究热点。虽然铋与较重的碱土金属形成了丰富多样的津特耳相,但镁化合物却少得多。在此我们表明,高温高压合成在中等条件下为制备MgBiH开辟了一条便捷途径。该化合物(空间群Pnma,a = 11.5399(3) Å,b = 8.9503(2) Å,c = 7.8770(2) Å)采用CaSbF晶体结构。只有通过该化合物的热分解结合气相质谱分析才能检测到微量的氢。对化学键的直接空间分析能够确定氢位于部分占据的间隙位置,并根据津特耳概念揭示出强极性的Mg - Bi键和Mg - H键。计算得到的能带结构显示,氢插入后会发生显著的电子重组。先进分析工具与现代量子化学技术相结合,为确定稳定金属间相的微量间隙原子提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ee/12043851/5605139752fe/42004_2025_1530_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验