Morfouace P, Taieb J, Chatillon A, Audouin L, Blanchon G, Bernard R N, Dubray N, Pillet N, Regnier D, Alvarez-Pol H, Amjad F, André P, Authelet G, Atar L, Aumann T, Benlliure J, Boretzky K, Bott L, Brecelj T, Caesar C, Carpentier P, Casarejos E, Cederkäll J, Corsi A, Cortina-Gil D, Cvetinović A, Filippo E De, Dickel T, Feijoo M, Fonseca L M, Galaviz D, García-Jiménez G, Gasparic I, Geraci E I, Gernhäuser R, Gnoffo B, Göbel K, Graña-González A, Haettner E, Hartig A-L, Heil M, Heinz A, Hensel T, Holl M, Hornung C, Horvat A, Jedele A, Malenica D Jelavic, Jenegger T, Ji L, Johansson H T, Jonson B, Jurado B, Kalantar-Nayestanaki N, Kazantseva E, Kelic-Heil A, Kiselev O A, Klenze P, Knöbel R, Körper D, Kostyleva D, Kröll T, Kuzminchuk N, Laurent B, Lihtar I, Litvinov Yu A, Löher B, Martorana N S, Mauss B, Morales S Murillo, Mücher D, Mukha I, Nacher E, Obertelli A, Pagano E V, Panin V, Park J, Paschalis S, Petri M, Pietri S, Pirrone S, Politi G, Ponnath L, Revel A, Rhee H-B, Rodríguez-Sánchez J L, Rose L, Rossi D, Roy P, Russotto P, Scheidenberger C, Scheit H, Simon H, Storck-Dutine S, Stott A, Sun Y L, Sürder C, Tanaka Y K, Taniuchi R, Tengblad O, Tisma I, Törnqvist H T, Trimarchi M, Velardita S, Vesic J, Voss B, Wamers F, Weick H, Wienholtz F, Zhao J, Zhukov M
CEA, DAM, DIF, Arpajon, France.
Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, Bruyères-le-Châtel, France.
Nature. 2025 May;641(8062):339-344. doi: 10.1038/s41586-025-08882-7. Epub 2025 Apr 30.
Nuclear fission leads to the splitting of a nucleus into two fragments. Studying the distribution of the masses and charges of the fragments is essential for establishing the fission mechanisms and refining the theoretical models. It has value for our understanding of r-process nucleosynthesis, in which the fission of nuclei with extreme neutron-to-proton ratios is pivotal for determining astrophysical abundances and understanding the origin of the elements and for energy applications. Although the asymmetric distribution of fragments is well understood for actinides (elements in the periodic table with atomic numbers from 89 to 103) based on shell effects, symmetric fission governs the scission process for lighter elements. However, unexpected asymmetric splits have been observed in neutron-deficient exotic nuclei, prompting extensive further investigations. Here we present measurements of the charge distributions of fission fragments for 100 exotic fissioning systems, 75 of which have never been measured, and establish a connection between the neutron-deficient sub-lead region and the well-understood actinide region. These new data comprehensively map the asymmetric fission island and provide clear evidence for the role played by the deformed Z = 36 proton shell of the light fragment in the fission of sub-lead nuclei. Our dataset will help constrain the fission models used to estimate the fission properties of nuclei with extreme neutron-to-proton ratios for which experimental data are unavailable.
核裂变导致原子核分裂成两个碎片。研究碎片的质量和电荷分布对于确定裂变机制和完善理论模型至关重要。它对于我们理解r过程核合成具有重要价值,在r过程核合成中,具有极端中子与质子比的原子核裂变对于确定天体物理丰度、理解元素起源以及能源应用起着关键作用。尽管基于壳效应,锕系元素(元素周期表中原子序数从89到103的元素)的碎片不对称分布已得到很好的理解,但对称裂变控制着较轻元素的裂变过程。然而,在缺中子的奇异核中观察到了意外的不对称分裂,这促使人们进行广泛的进一步研究。在此,我们展示了100个奇异裂变系统的裂变碎片电荷分布测量结果,其中75个系统此前从未被测量过,并在缺中子的次铅区与已被充分理解的锕系区之间建立了联系。这些新数据全面描绘了不对称裂变岛,并为轻碎片中变形的Z = 36质子壳在次铅核裂变中所起的作用提供了明确证据。我们的数据集将有助于限制用于估计缺乏实验数据的具有极端中子与质子比的原子核裂变特性的裂变模型。