Bankolé Alexia, Srivastava Ayush, Shihavuddin Asm, Tighanimine Khaled, Faucourt Marion, Koka Vonda, Weill Solene, Nemazanyy Ivan, Nelson Alissa J, Stokes Matthew P, Delgehyr Nathalie, Genovesio Auguste, Meunier Alice, Fumagalli Stefano, Pende Mario, Spassky Nathalie
Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
EMBO Rep. 2025 Apr 30. doi: 10.1038/s44319-025-00460-2.
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
室管膜细胞是衬于哺乳动物脑室的多纤毛神经胶质细胞。它们从祖细胞分化而来涉及细胞增大,并经历中心粒扩增阶段和成纤毛过程。这些阶段伴随着mTOR复合体1(mTORC1)活性的急剧上调,mTORC1是大分子生物合成和细胞生长的主要调节因子,其在室管膜细胞分化中的功能尚不清楚。我们证明,雷帕霉素对mTORC1的抑制作用通过增强静止状态并防止中心粒扩增的替代细胞周期进程来保留祖细胞池。过表达E2F4和MCIDAS可规避mTORC1调节的过程,尽管存在雷帕霉素仍能实现中心粒扩增,并通过正反馈增强mTORC1活性。在分化后期对多中心粒细胞进行急性雷帕霉素处理会导致中心粒重新排列,表明mTORC1在中心粒动力学中具有直接作用。通过磷酸化蛋白质组学和磷酸突变分析,我们发现mTORC1介导的GAS2L1磷酸化(一种连接肌动蛋白和微管细胞骨架的中心体蛋白)参与中心粒脱离。mTORC1对室管膜发育从祖细胞池到中心粒功能的这种多层级和顺序性控制,对衰老和易患脑积水的遗传性疾病等病理生理状况具有重要意义。