Suppr超能文献

适配体功能化的石墨烯量子点与人工智能相结合用于检测尿路感染的细菌。

Aptamer-functionalized graphene quantum dots combined with artificial intelligence detect bacteria for urinary tract infections.

作者信息

Li Kun, Fang Shiqiang, Wu Tangwei, Zheng Chao, Zeng Yi, He Jinrong, Zhang Yingmiao, Lu Zhongxin

机构信息

Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Cell Infect Microbiol. 2025 Apr 16;15:1555617. doi: 10.3389/fcimb.2025.1555617. eCollection 2025.

Abstract

OBJECTIVES

Urinary tract infection is one of the most prevalent forms of bacterial infection, and prompt and efficient identification of pathogenic bacteria plays a pivotal role in the management of urinary tract infections. In this study, we propose a novel approach utilizing aptamer-functionalized graphene quantum dots integrated with an artificial intelligence detection system (AG-AI detection system) for rapid and highly sensitive detection of ().

METHODS

Firstly, graphene quantum dots were modified with the aptamer that can specifically recognize and bind to . Therefore, the fluorescence intensity of graphene quantum dots was positively correlated with the concentration of . Finally, the fluorescence images were processed by artificial intelligence system to obtain the result of bacterial concentration.

RESULTS

The AG-AI detection system, with wide linearity (10-10 CFU/mL) and a low detection limit (3.38×10 CFU/mL), can effectively differentiate between and other urinary tract infection bacteria. And the result of detection system is in good agreement with MALDI-TOF MS.

CONCLUSIONS

The detection system is an accurate and effective way to detect bacteria in urinary tract infections.

摘要

目的

尿路感染是最常见的细菌感染形式之一,快速有效地鉴定病原菌在尿路感染的管理中起着关键作用。在本研究中,我们提出了一种利用适体功能化石墨烯量子点与人工智能检测系统相结合的新方法(AG-AI检测系统),用于快速、高灵敏度地检测()。

方法

首先,用能特异性识别并结合()的适体修饰石墨烯量子点。因此,石墨烯量子点的荧光强度与()的浓度呈正相关。最后,通过人工智能系统处理荧光图像以获得细菌浓度结果。

结果

AG-AI检测系统具有宽线性范围(10-10 CFU/mL)和低检测限(3.38×10 CFU/mL),能有效区分()与其他尿路感染细菌。并且检测系统的结果与基质辅助激光解吸电离飞行时间质谱法(MALDI-TOF MS)结果高度一致。

结论

该检测系统是检测尿路感染细菌的一种准确有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5439/12040687/1f621bd6a146/fcimb-15-1555617-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验