Rivera Rolando L Albarracín, Colon-Ruiz Yomari L, De La Torre-Rosa Adriana, Garcia-Ramos Andrea I, Garcia-Sanchez Alondra M, Gierbolini-Ortiz Lianellys, Lopez-Torres Marialejandra, Ortiz-Rodriguez Nasya, Rivera-Rivera Vanessa A, Santiago-Soler Sofia C, Siberon-Albertorio Jerica A, Silva-Burgos Juliannie N, Torres-Morales Coralys, Santana Juan A
Department of Chemistry, The University of Puerto Rico at Cayey, P. O. Box 372230, Cayey, PR 00737-2230, USA.
ChemistrySelect. 2024 Oct 18;9(39). doi: 10.1002/slct.202304290. Epub 2024 Oct 17.
In this study, we expand the computational investigation of selenium, which has previously been limited to metals such as Cu, Fe, Pd, Au, and Pt. Utilizing density functional theory calculations, we explore the adsorption and diffusion of selenium at a low-coverage regime of 0.25 ML on a broader range of metal surfaces, including Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. Our results reveal that selenium exhibits a distinct preference for three-fold or four-fold high-coordination sites on most studied surfaces. We further analyze the minimum energy diffusion pathways, demonstrating that the energy barrier for selenium's surface diffusion varies significantly based on the orientation and nature of the metal surfaces. Specifically, on (100) surfaces, selenium exhibits the highest diffusion energy, ranging from 0.60 eV in Au(100) to 1.12 eV in Pd(100). The diffusion behavior on (110) and (211) surfaces is also elaborated, emphasizing the unique trends observed compared to previously studied elements like sulfur. Importantly, this study is a new reference for future computational analyses, filling existing gaps by providing comprehensive data on selenium adsorption on various face-centered cubic metal surfaces not previously reported.
在本研究中,我们拓展了对硒的计算研究,此前该研究仅限于铜、铁、钯、金和铂等金属。利用密度泛函理论计算,我们在包括镍、铜、铑、钯、银、铱、铂和金在内的更广泛金属表面上,探索了覆盖率为0.25单层的低覆盖度条件下硒的吸附和扩散情况。我们的结果表明,在大多数研究的表面上,硒对三重或四重高配位位点表现出明显的偏好。我们进一步分析了最低能量扩散路径,结果表明,硒在表面扩散的能垒会因金属表面的取向和性质而有显著变化。具体而言,在(100)表面上,硒表现出最高的扩散能,范围从金(100)表面的0.60电子伏特到钯(100)表面的1.12电子伏特。我们还阐述了(110)和(211)表面上的扩散行为,强调了与之前研究的硫等元素相比所观察到的独特趋势。重要的是,本研究为未来的计算分析提供了新的参考,通过提供此前未报道的关于硒在各种面心立方金属表面吸附的全面数据,填补了现有空白。