Ekaterina Kldiashvili, Saba Iordanishvili, Sophia Adamia, Ivane Abiatari, Maia Zarnadze
Petre Shotadze Tbilisi Medical Academy Tbilisi Georgia.
Institute of Medical and Public Health Research Ilia State University Tbilisi Georgia.
Health Sci Rep. 2025 Apr 29;8(5):e70796. doi: 10.1002/hsr2.70796. eCollection 2025 May.
Noninvasive diagnostic methods are essential for early cancer detection and improved patient outcomes. Circulating biomarkers, measurable indicators of pathological processes, offer a promising avenue, yet optimal panels for reliable cancer diagnosis remain undefined. This study evaluates the diagnostic performance of selected plasma biomarkers in distinguishing breast cancer and prostate adenocarcinoma patients from healthy individuals, using statistical analysis and machine learning.
We analyzed blood samples from 162 participants (73 cancer patients: 51 with breast cancer and 22 with prostate adenocarcinoma; 89 healthy controls). Levels of 12 cancer-associated biomarkers-including Ki67, DNMT1, BRCA1, and MPO-were quantified using enzyme-linked immunosorbent assays (ELISA). Statistical analyses, including the Mann-Whitney U test and machine learning models (random forest), were employed to assess the predictive accuracy of these biomarkers in distinguishing between cancerous and healthy states.
Biomarkers such as Ki67, DNMT1, and MPO were significantly elevated in cancer groups. Random forest models using selected combinations (e.g., BRCA1-CTA-TP53) achieved perfect classification accuracy (AUC = 1.00). However, high inter-marker correlations suggested potential redundancy, underscoring the need for biomarker panel optimization.
Our findings support the potential of biomarker panels for accurate, noninvasive cancer diagnostics. Further validation in larger, more diverse cohorts is warranted to establish clinical utility and generalizability.
非侵入性诊断方法对于早期癌症检测和改善患者预后至关重要。循环生物标志物作为病理过程的可测量指标,提供了一条有前景的途径,但用于可靠癌症诊断的最佳指标组合仍未明确。本研究使用统计分析和机器学习评估了选定血浆生物标志物在区分乳腺癌和前列腺腺癌患者与健康个体方面的诊断性能。
我们分析了162名参与者的血样(73名癌症患者:51名乳腺癌患者和22名前列腺腺癌患者;89名健康对照)。使用酶联免疫吸附测定(ELISA)对12种癌症相关生物标志物(包括Ki67、DNMT1、BRCA1和MPO)的水平进行了定量。采用包括曼-惠特尼U检验和机器学习模型(随机森林)在内的统计分析来评估这些生物标志物在区分癌症状态和健康状态方面的预测准确性。
Ki67、DNMT1和MPO等生物标志物在癌症组中显著升高。使用选定组合(如BRCA1-CTA-TP53)的随机森林模型实现了完美的分类准确性(AUC = 1.00)。然而,标志物间的高相关性表明存在潜在的冗余,这突出了优化生物标志物组合的必要性。
我们的研究结果支持生物标志物组合在准确、非侵入性癌症诊断方面的潜力。有必要在更大、更多样化的队列中进行进一步验证,以确定其临床实用性和普遍性。