Martusciello Martina, Hervieu Coralie, Di Fonzo Daniela, Lanfranchi Andrea, Lova Paola, Comoretto Davide
Dipartimento di Chimica e Chimica Industriale, Università di Genova, via Dodecaneso 31, 16146 Genova, Italy.
École d'Ingénieurs Publique du MESRI, Sigma Clermont, 20 Avenue Blaise Pascal, TSA 62006, 63178 Aubiere Cedex, France.
ACS Appl Polym Mater. 2025 Apr 9;7(8):4779-4786. doi: 10.1021/acsapm.4c04077. eCollection 2025 Apr 25.
Dip-coating plays a crucial role in the production of polymer thin films and coatings on both laboratory and industrial scales. The simplicity of the process, combined with its adaptability and precision, makes it an invaluable technique for achieving consistent and reproducible coatings, which can also be suitable for photonics applications. As a cheaper, more flexible alternative to commercial dip-coaters, we report on the conversion of a commercial 3D printer designed for fused deposition modeling into a dip-coating system for fabricating multilayered photonic crystals. The feasibility of this approach is demonstrated by fabricating both distributed Bragg reflectors and a fluorescence planar microcavity. We used a perfluorinated polymer formulation and poly(-vinylcarbazole) as structural dielectric media, alongside a recycled blend of fluorescent polystyrene as a light emitter for the microcavity. In both cases, precise control of the deposition parameters enables the formation of uniform photonic nanostructures, leading to a spectral redistribution of fluorescence comparable to that achieved by standard spin-coated photonic crystals. This approach paves the way toward automating the fabrication of planar photonic structures on a laboratory scale, with the potential to scale up to larger surface areas compared to those obtained by standard methods.
浸涂法在实验室和工业规模的聚合物薄膜及涂层生产中都起着至关重要的作用。该工艺简单,兼具适应性和精确性,使其成为获得均匀且可重复涂层的宝贵技术,这些涂层也适用于光子学应用。作为商业浸涂机更便宜、更灵活的替代方案,我们报告了将用于熔融沉积建模的商用3D打印机改装为用于制造多层光子晶体的浸涂系统。通过制造分布式布拉格反射器和荧光平面微腔,证明了这种方法的可行性。我们使用全氟聚合物配方和聚(乙烯基咔唑)作为结构介电介质,同时使用荧光聚苯乙烯的回收混合物作为微腔的发光体。在这两种情况下,对沉积参数的精确控制能够形成均匀的光子纳米结构,导致荧光光谱重新分布,与通过标准旋涂光子晶体实现的荧光光谱重新分布相当。这种方法为在实验室规模上自动化制造平面光子结构铺平了道路,与通过标准方法获得的相比,有可能扩大到更大的表面积。