Feng Yi-Hu, Lin Chengye, Qin Hanwen, Wei Guang-Xu, Yang Chao, Tang Yongwei, Zhu Xu, Sun Shuai, Chen Tian-Ling, Liu Mengting, Zheng Hong, Ji Xiao, You Ya, Wang Peng-Fei
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.
School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
J Am Chem Soc. 2025 May 14;147(19):16107-16118. doi: 10.1021/jacs.4c18326. Epub 2025 May 1.
Great electrochemical stability and intrinsic safety are of critical significance in realizing large-scale applications of Na-ion batteries (NIBs). Unfortunately, the notorious decomposition of the electrolyte and undesirable side reactions on the cathode-electrolyte interphase (CEI) pose major obstacles to the practical implementation of NIBs. Besides, the flammability of traditional carbonate-based electrolytes raises increasing safety concerns about the batteries. Herein, a flame-retardant all-fluorinated electrolyte is proposed to achieve an anion-aggregated inner solvation shell by modulating cation-anion interactions through a low-coordination number cosolvent. The more electrochemically antioxidant fluorinated solvents and anion-dominated interfacial chemistry contribute to the construction of both mechanically and chemically stable F-rich CEI. Such thin, homogeneous interphase effectively inhibits the parasitic reaction, strengthens the interfacial stability, and enables fast Na diffusion kinetics on the interface. When employing this electrolyte, the NaNiFeMnTiO (NFMT) cathode delivers remarkable discharge capacity up to 169.7 mAh g, with stable cycling at 1C for 500 cycles. Impressively, NFMT//hard carbon pouch cells with such electrolyte also achieve a steady operation for 100 cycles at 0.5C with 86.8% capacity remaining. This study offers a practical reference for developing high-performance and flame-retardant electrolytes.
优异的电化学稳定性和本征安全性对于实现钠离子电池(NIBs)的大规模应用至关重要。不幸的是,电解质的分解以及阴极-电解质界面(CEI)上不良的副反应给NIBs的实际应用带来了主要障碍。此外,传统碳酸盐基电解质的易燃性引发了人们对电池安全性越来越多的担忧。在此,我们提出了一种阻燃全氟电解质,通过低配位数共溶剂调节阳离子-阴离子相互作用,以实现阴离子聚集的内溶剂化壳层。电化学抗氧化性更强的含氟溶剂和以阴离子为主的界面化学有助于构建机械和化学稳定性均良好的富含氟的CEI。这种薄而均匀的界面有效地抑制了寄生反应,增强了界面稳定性,并使界面上的钠离子扩散动力学加快。使用这种电解质时,NaNiFeMnTiO(NFMT)阴极的放电容量高达169.7 mAh g,在1C下可稳定循环500次。令人印象深刻的是,采用这种电解质的NFMT//硬碳软包电池在0.5C下也能稳定运行100次,容量保持率为86.8%。本研究为开发高性能阻燃电解质提供了实际参考。