Cao Mingfeng, Feng Shi Nan, Ahmed Yaman B, Liu Winnie, Brown Patricia, Kalra Andrew, Shou Benjamin, Bezerianos Anastasios, Thakor Nitish, Whitman Glenn, Cho Sung-Min
From the Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland.
Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland.
ASAIO J. 2025 May 1. doi: 10.1097/MAT.0000000000002449.
Acute brain injury (ABI) is prevalent among patients undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO) and significantly impact recovery. Early prediction of ABI could enable timely interventions to prevent adverse outcomes, but existing predictive methods remain suboptimal. This study aimed to enhance ABI prediction using machine learning (ML) models and high-temporal-resolution granular data. We retrospectively analyzed 355 VA-ECMO patients treated at Johns Hopkins Hospital (JHH) from 2016 to 2024, collecting over 3 million data points from the JHH Research Electronic Data Capture (REDCap) database, with an average of 80,000 data points per patient. Acute brain injury was defined as ischemic stroke, intracranial hemorrhage, hypoxic-ischemic brain injury, or seizure. Four ML models were used: Random Forest, Categorical Boosting, Adaptive Boosting, and Extreme Gradient Boosting. Among 355 patients (median age 59 years, 56.9% male), 13.5% developed ABI. The models achieved an optimal area under the receiver operating characteristic curve (AUROC) of 0.79, accuracy of 87%, sensitivity of 53%, specificity of 99%, and precision-recall (PR)-AUC of 0.47. Key predictors included high minimum values of systolic blood pressure and variability in on-ECMO pulse pressure. High-resolution granular data enhanced ML performance for ABI prediction. Future efforts should focus on integrating continuous data platforms to enable real-time monitoring and personalized care, optimizing patient outcomes.
急性脑损伤(ABI)在接受静脉-动脉体外膜肺氧合(VA-ECMO)治疗的患者中很常见,并对恢复有显著影响。早期预测ABI可以及时进行干预以预防不良后果,但现有的预测方法仍不尽人意。本研究旨在使用机器学习(ML)模型和高时间分辨率的颗粒数据来增强ABI预测。我们回顾性分析了2016年至2024年在约翰霍普金斯医院(JHH)接受治疗的355例VA-ECMO患者,从JHH研究电子数据采集(REDCap)数据库中收集了超过300万个数据点,平均每位患者80000个数据点。急性脑损伤被定义为缺血性中风、颅内出血、缺氧缺血性脑损伤或癫痫发作。使用了四种ML模型:随机森林、分类提升、自适应提升和极端梯度提升。在355例患者(中位年龄59岁,56.9%为男性)中,13.5%发生了ABI。这些模型在受试者操作特征曲线(AUROC)下的最佳面积为0.79,准确率为87%,灵敏度为53%,特异性为99%,精确召回率(PR)-AUC为0.47。关键预测因素包括收缩压的高最小值和体外膜肺氧合期间脉压的变异性。高分辨率颗粒数据增强了ML对ABI预测的性能。未来的工作应集中在整合连续数据平台以实现实时监测和个性化护理,优化患者预后。