Suppr超能文献

利用真实世界数据揭示肌萎缩侧索硬化症和神经疾病的新治疗靶点

Uncovering New Therapeutic Targets for Amyotrophic Lateral Sclerosis and Neurological Diseases Using Real-World Data.

作者信息

Alidoost Mohammadali, Huang Jeremy Y, Dermentzaki Georgia, Blazier Anna S, Gaglia Giorgio, Hammond Timothy R, Frau Francesca, McCorry Mary Clare, Ofengeim Dimitry, Wilson Jennifer L

机构信息

Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.

Precision Medicine & Computational Biology, Sanofi Research US, Cambridge, Massachusetts, USA.

出版信息

Clin Pharmacol Ther. 2025 Jul;118(1):242-251. doi: 10.1002/cpt.3682. Epub 2025 May 1.

Abstract

Although attractive for relevance to real-world scenarios, real-world data (RWD) is typically used for drug repurposing and not therapeutic target discovery. Repurposing studies have identified few effective options in neurological diseases such as the rare disease, amyotrophic lateral sclerosis (ALS), which has no disease-modifying treatments available. We previously reclassified drugs by their simulated effects on proteins downstream of drug targets and observed class-level effects in the EHR, implicating the downstream protein as the source of the effect. Here, we developed a novel ALS-focused network medicine model using data from patient samples, the public domain, and consortia. With this model, we simulated drug effects on ALS and measured class effects on overall survival in retrospective EHR studies. We observed an increased but non-significant risk of death for patients taking drugs with complement system proteins downstream of their targets and experimentally validated drug effects on complement activation. We repeated this for six protein classes, three of which, including multiple chemokine receptors, were associated with a significantly increased risk for death, suggesting that targeting proteins such as CXCR5, CXCR3, chemokine signaling generally, or neuropeptide Y (NPY) could be advantageous therapeutic targets for these patients. We expanded our analysis to the neuroinflammatory condition, myasthenia gravis, and neurodegenerative disease, Parkinson's, and recovered similar effect sizes. We demonstrated the utility of network medicine for testing novel therapeutic effects using RWD and believe this approach may accelerate target discovery in neurological diseases, addressing the critical need for new therapeutic options.

摘要

尽管真实世界数据(RWD)与现实世界场景相关,颇具吸引力,但它通常用于药物重新利用,而非治疗靶点发现。重新利用研究在神经疾病中几乎未发现有效的选择,比如罕见病肌萎缩侧索硬化症(ALS),目前尚无改善病情的治疗方法。我们之前根据药物对靶点下游蛋白质的模拟效应重新对药物进行了分类,并在电子健康记录(EHR)中观察到类别层面的效应,这表明下游蛋白质是效应的来源。在此,我们利用来自患者样本、公共领域和联盟的数据,开发了一种新型的以ALS为重点的网络医学模型。借助该模型,我们在回顾性EHR研究中模拟了药物对ALS的效应,并测量了对总生存期的类别效应。我们观察到,服用靶点下游具有补体系统蛋白的药物的患者死亡风险增加,但无统计学意义,并且通过实验验证了药物对补体激活的效应。我们对六类蛋白质重复了这一过程,其中三类,包括多种趋化因子受体,与显著增加的死亡风险相关,这表明靶向诸如CXCR5、CXCR3、一般趋化因子信号传导或神经肽Y(NPY)等蛋白质可能是这些患者有利的治疗靶点。我们将分析扩展到神经炎症性疾病重症肌无力和神经退行性疾病帕金森病,并得到了类似的效应大小。我们证明了网络医学利用RWD测试新型治疗效应的实用性,并相信这种方法可能会加速神经疾病中的靶点发现,满足对新治疗选择的迫切需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/febe/12166258/77957e486411/CPT-118-242-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验