Ge Ying-Di, Zhou Xin-Yang, Shang Wei, Liu Yue, Zhong Hong-Jie, Cao Jun-Ming, Wu Xing-Long
Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
State Key Laboratory of Integrated Optoelectronics, MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024, China.
Chemistry. 2025 Jun 12;31(33):e202501293. doi: 10.1002/chem.202501293. Epub 2025 May 19.
The advancement of high-performance, safe, and cost-effective multivalent-ion batteries is pivotal for sustainable energy storage. Prussian blue analogs (PBAs), with their open framework and tunable redox-active sites, hold significant promise but face challenges in structural instability and sluggish ion diffusion. This review focuses on entropy production PBAs (EP-PBAs) for non-monovalent ion (Zn, Al, Mg, and Ca) battery systems. Incorporating multiple transition metals into PBAs leverages entropy production effects to stabilize crystal structures, enhance ion diffusion kinetics, and improve cycling stability. Synthesis methods such as coprecipitation, electrochemical deposition, and hydrothermal techniques are compared, with coprecipitation emerging as the most scalable approach. Entropy engineering mitigates lattice distortion, reduces defects, and suppresses phase transitions, enabling EP-PBAs to achieve high specific capacities and long-term stability. Challenges including interfacial instability and synthesis complexity are discussed, alongside future directions in material optimization, electrolyte compatibility, and scalable production. This work highlights the potential of entropy-stabilized PBAs as next-generation cathodes for multivalent-ion batteries, advancing sustainable energy storage technologies.
高性能、安全且经济高效的多价离子电池的发展对于可持续储能至关重要。普鲁士蓝类似物(PBAs)具有开放框架和可调节的氧化还原活性位点,具有巨大潜力,但在结构稳定性和离子扩散缓慢方面面临挑战。本综述聚焦于用于非单价离子(锌、铝、镁和钙)电池系统的熵产生PBAs(EP-PBAs)。将多种过渡金属引入PBAs利用熵产生效应来稳定晶体结构、增强离子扩散动力学并提高循环稳定性。比较了共沉淀、电化学沉积和水热技术等合成方法,其中共沉淀是最具可扩展性的方法。熵工程减轻晶格畸变、减少缺陷并抑制相变,使EP-PBAs能够实现高比容量和长期稳定性。讨论了包括界面不稳定性和合成复杂性在内的挑战,以及材料优化、电解质兼容性和可扩展生产方面的未来方向。这项工作突出了熵稳定PBAs作为多价离子电池下一代阴极的潜力,推动了可持续储能技术的发展。